平均场游戏和理想的免费发行。

IF 2.3 4区 数学 Q2 BIOLOGY
Robert Stephen Cantrell, Chris Cosner, King-Yeung Lam, Idriss Mazari-Fouquer
{"title":"平均场游戏和理想的免费发行。","authors":"Robert Stephen Cantrell, Chris Cosner, King-Yeung Lam, Idriss Mazari-Fouquer","doi":"10.1007/s00285-025-02276-z","DOIUrl":null,"url":null,"abstract":"<p><p>The ideal free distribution in ecology was introduced by Fretwell and Lucas to model the habitat selection of animal populations. In this paper, we revisit the concept via a mean field game system with local coupling, which models a dynamic version of the habitat selection game in ecology. We establish the existence of classical solution of the ergodic mean field game system, including the case of heterogeneous diffusion when the underlying domain is one-dimensional and further show that the population density of agents converges to the ideal free distribution of the underlying habitat selection game, as the cost of control tends to zero. Our analysis provides a derivation of ideal free distribution in a dynamical context.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"46"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mean Field Games and Ideal Free Distribution.\",\"authors\":\"Robert Stephen Cantrell, Chris Cosner, King-Yeung Lam, Idriss Mazari-Fouquer\",\"doi\":\"10.1007/s00285-025-02276-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ideal free distribution in ecology was introduced by Fretwell and Lucas to model the habitat selection of animal populations. In this paper, we revisit the concept via a mean field game system with local coupling, which models a dynamic version of the habitat selection game in ecology. We establish the existence of classical solution of the ergodic mean field game system, including the case of heterogeneous diffusion when the underlying domain is one-dimensional and further show that the population density of agents converges to the ideal free distribution of the underlying habitat selection game, as the cost of control tends to zero. Our analysis provides a derivation of ideal free distribution in a dynamical context.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 4\",\"pages\":\"46\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02276-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02276-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Fretwell和Lucas在生态学中引入了理想的自由分布来模拟动物种群的生境选择。在本文中,我们通过一个具有局部耦合的平均场博弈系统来重新审视这一概念,该系统模拟了生态学中栖息地选择博弈的动态版本。我们建立了遍历平均场博弈系统经典解的存在性,包括底层域为一维时的异构扩散情况,并进一步证明了agent的种群密度收敛于底层生境选择博弈的理想自由分布,控制成本趋于零。我们的分析提供了动态环境下理想自由分布的一个推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Field Games and Ideal Free Distribution.

The ideal free distribution in ecology was introduced by Fretwell and Lucas to model the habitat selection of animal populations. In this paper, we revisit the concept via a mean field game system with local coupling, which models a dynamic version of the habitat selection game in ecology. We establish the existence of classical solution of the ergodic mean field game system, including the case of heterogeneous diffusion when the underlying domain is one-dimensional and further show that the population density of agents converges to the ideal free distribution of the underlying habitat selection game, as the cost of control tends to zero. Our analysis provides a derivation of ideal free distribution in a dynamical context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信