利用PPG传感器数据和人口统计学因素预测高血压:一种机器学习方法。

IF 1.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Feng-Qin Liu, Yingxia Mo
{"title":"利用PPG传感器数据和人口统计学因素预测高血压:一种机器学习方法。","authors":"Feng-Qin Liu, Yingxia Mo","doi":"10.1177/09287329251375640","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundHypertension is one of the most important health-related problems worldwide, and its monitoring is necessary constantly.ObjectiveThe regular methods of blood pressure monitoring have disadvantages; hence, the interest in finding better solutions is stirred.MethodsIn this study, PPG signals from 218 subjects in Guilin People's Hospital were analyzed, where 657 PPG recordings were employed together with demographic and clinical data. CNN-Attention, CNN-GRU, and LSTM, have been conducted with z-score normalization and augmentation in an 80:20 train-test split.ResultsThe highest performance of the CNN-GRU model achieved 75% accuracy, an AUC-ROC of 0.658, and perfect recall for hypertensive cases at 1.00. While the CNN-Attention model reached an accuracy of 61%, the overall poorest performance was given by LSTM.ConclusionThese results prove that accessible cardiovascular monitoring is feasible and valuable in a resource-limited settings.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329251375640"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting hypertension using PPG sensor data and demographic factors: A machine learning approach.\",\"authors\":\"Feng-Qin Liu, Yingxia Mo\",\"doi\":\"10.1177/09287329251375640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundHypertension is one of the most important health-related problems worldwide, and its monitoring is necessary constantly.ObjectiveThe regular methods of blood pressure monitoring have disadvantages; hence, the interest in finding better solutions is stirred.MethodsIn this study, PPG signals from 218 subjects in Guilin People's Hospital were analyzed, where 657 PPG recordings were employed together with demographic and clinical data. CNN-Attention, CNN-GRU, and LSTM, have been conducted with z-score normalization and augmentation in an 80:20 train-test split.ResultsThe highest performance of the CNN-GRU model achieved 75% accuracy, an AUC-ROC of 0.658, and perfect recall for hypertensive cases at 1.00. While the CNN-Attention model reached an accuracy of 61%, the overall poorest performance was given by LSTM.ConclusionThese results prove that accessible cardiovascular monitoring is feasible and valuable in a resource-limited settings.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"9287329251375640\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09287329251375640\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251375640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景高血压是世界范围内最重要的健康相关问题之一,其监测是必要的。目的常规血压监测方法存在弊端;因此,寻找更好的解决方案的兴趣被激起了。方法对桂林人民医院218例患者的PPG信号进行分析,其中657份PPG记录与人口学和临床资料相结合。CNN-Attention, CNN-GRU和LSTM在80:20训练测试分割下进行z-score归一化和增强。结果CNN-GRU模型的最高准确率达到75%,AUC-ROC为0.658,对高血压病例的召回率为1.00。虽然CNN-Attention模型的准确率达到61%,但LSTM的整体表现最差。结论在资源有限的情况下,无障碍心血管监测是可行和有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting hypertension using PPG sensor data and demographic factors: A machine learning approach.

BackgroundHypertension is one of the most important health-related problems worldwide, and its monitoring is necessary constantly.ObjectiveThe regular methods of blood pressure monitoring have disadvantages; hence, the interest in finding better solutions is stirred.MethodsIn this study, PPG signals from 218 subjects in Guilin People's Hospital were analyzed, where 657 PPG recordings were employed together with demographic and clinical data. CNN-Attention, CNN-GRU, and LSTM, have been conducted with z-score normalization and augmentation in an 80:20 train-test split.ResultsThe highest performance of the CNN-GRU model achieved 75% accuracy, an AUC-ROC of 0.658, and perfect recall for hypertensive cases at 1.00. While the CNN-Attention model reached an accuracy of 61%, the overall poorest performance was given by LSTM.ConclusionThese results prove that accessible cardiovascular monitoring is feasible and valuable in a resource-limited settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology and Health Care
Technology and Health Care HEALTH CARE SCIENCES & SERVICES-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
6.20%
发文量
282
审稿时长
>12 weeks
期刊介绍: Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered: 1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables. 2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words. Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics. 4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors. 5.Letters to the Editors: Discussions or short statements (not indexed).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信