{"title":"通过可解释的人工智能对妊娠早期胎儿运动及其结果的评估模型:一项多中心研究。","authors":"Manohar Pavanya, Krishnaraj Chadaga, Vennila J, Akhila Vasudeva, Bhamini Krishna Rao, Shashikala K. Bhat","doi":"10.1049/htl2.70014","DOIUrl":null,"url":null,"abstract":"<p>Foetal outcomes with reduced foetal movements in the later pregnancy are widely reported. We intend to quantify early foetal movements (FMs) through a checklist and their foetal outcomes via explainable artificial intelligence. It is a prospective observational study of 356 foetuses in the first trimester, and we were able to screen only 230 foetuses for early foetal growth restriction (FGR). Of which 26 were FGR and 204 were normal and were identified from the dataset using non-probability convenience sampling techniques. JASP 0.18.3, Jamovi 2.3.21, and Google Collaboratory were used to construct the predictive model. Ultrasound scores of more than 8 had favourable indicators of a normal foetus. CatBoost had the highest accuracy and recall of 87; the highest precision of 79 was given by random forest (RF), decision tree (DT), K-nearest neighbour (KNN), and CatBoost; and the F1 score of 83 was given by CatBoost. The lowest Hamming loss of 0.13 was obtained via CatBoost. The highest Jaccard score of 0.87 was by CatBoost. The stacked model has an accuracy of 89, a precision of 79, and a recall of 83. Shapley additive explanations (SHAP), local interpretable model-agnostic explanations (LIME), QLattice, and Anchor also provided good explanations. The created model can serve as a warning tool to obstetricians to make timely medical decisions.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439193/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Model of the First Trimester Evaluation of Foetal Movements and Their Outcomes via Explainable Artificial Intelligence: A Multicentric Study\",\"authors\":\"Manohar Pavanya, Krishnaraj Chadaga, Vennila J, Akhila Vasudeva, Bhamini Krishna Rao, Shashikala K. Bhat\",\"doi\":\"10.1049/htl2.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Foetal outcomes with reduced foetal movements in the later pregnancy are widely reported. We intend to quantify early foetal movements (FMs) through a checklist and their foetal outcomes via explainable artificial intelligence. It is a prospective observational study of 356 foetuses in the first trimester, and we were able to screen only 230 foetuses for early foetal growth restriction (FGR). Of which 26 were FGR and 204 were normal and were identified from the dataset using non-probability convenience sampling techniques. JASP 0.18.3, Jamovi 2.3.21, and Google Collaboratory were used to construct the predictive model. Ultrasound scores of more than 8 had favourable indicators of a normal foetus. CatBoost had the highest accuracy and recall of 87; the highest precision of 79 was given by random forest (RF), decision tree (DT), K-nearest neighbour (KNN), and CatBoost; and the F1 score of 83 was given by CatBoost. The lowest Hamming loss of 0.13 was obtained via CatBoost. The highest Jaccard score of 0.87 was by CatBoost. The stacked model has an accuracy of 89, a precision of 79, and a recall of 83. Shapley additive explanations (SHAP), local interpretable model-agnostic explanations (LIME), QLattice, and Anchor also provided good explanations. The created model can serve as a warning tool to obstetricians to make timely medical decisions.</p>\",\"PeriodicalId\":37474,\"journal\":{\"name\":\"Healthcare Technology Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl2.70014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl2.70014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Model of the First Trimester Evaluation of Foetal Movements and Their Outcomes via Explainable Artificial Intelligence: A Multicentric Study
Foetal outcomes with reduced foetal movements in the later pregnancy are widely reported. We intend to quantify early foetal movements (FMs) through a checklist and their foetal outcomes via explainable artificial intelligence. It is a prospective observational study of 356 foetuses in the first trimester, and we were able to screen only 230 foetuses for early foetal growth restriction (FGR). Of which 26 were FGR and 204 were normal and were identified from the dataset using non-probability convenience sampling techniques. JASP 0.18.3, Jamovi 2.3.21, and Google Collaboratory were used to construct the predictive model. Ultrasound scores of more than 8 had favourable indicators of a normal foetus. CatBoost had the highest accuracy and recall of 87; the highest precision of 79 was given by random forest (RF), decision tree (DT), K-nearest neighbour (KNN), and CatBoost; and the F1 score of 83 was given by CatBoost. The lowest Hamming loss of 0.13 was obtained via CatBoost. The highest Jaccard score of 0.87 was by CatBoost. The stacked model has an accuracy of 89, a precision of 79, and a recall of 83. Shapley additive explanations (SHAP), local interpretable model-agnostic explanations (LIME), QLattice, and Anchor also provided good explanations. The created model can serve as a warning tool to obstetricians to make timely medical decisions.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.