高粱(sorghum bicolor L.)生理、生化和元基因表达对干旱胁迫响应的综合分析验证研究。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY
Hossein Kazemi, Atefeh Sabouri, Ali Aalami, Amin Abedi, Mahnaz Nezamivand-Chegini
{"title":"高粱(sorghum bicolor L.)生理、生化和元基因表达对干旱胁迫响应的综合分析验证研究。","authors":"Hossein Kazemi, Atefeh Sabouri, Ali Aalami, Amin Abedi, Mahnaz Nezamivand-Chegini","doi":"10.1007/s00709-025-02112-7","DOIUrl":null,"url":null,"abstract":"<p><p>Sorghum (Sorghum bicolor L.) is a prominent cereal known for its high photosynthetic efficiency and biomass production, serving as a source of food, animal feed, fiber, and biofuels. This study aims to validate identified meta-genes associated with drought stress in sorghum. Two cultivars, Mansour (drought-tolerant) and Pegah (drought-susceptible), were subjected to drought stress at four levels (25%, 50%, 75%, and 100% of field capacity [FC]( During the 4-5 leaf stage in a greenhouse in 2021. The physiological and molecular responses of the sorghum samples were evaluated at 24, 48, 72, and 96 h post-treatment. The expression of five meta-genes was analyzed to validate these candidate genes related to drought stress tolerance in sorghum. Analysis of variance indicated that the main effects of drought, cultivar, and sampling time, as well as their interactions, had highly significant effects (P < 0.01) on most physiological and biochemical traits. The relative expression of the genes SORBI_3002G225100, SORBI_3003G332200, SORBI_3003G368300, SORBI_3010G081800, and SORBI_3004G293500 increased over time under drought stress. Proline levels, ion leakage, soluble sugars, and the activities of catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes increased with the intensity of drought stress and over time. Conversely, the levels of chlorophyll a and b, carotenoids, RWC, leaf surface area, and protein content decreased under drought conditions. These results confirm the relevance of these genes in conferring drought stress tolerance in sorghum. This research provides new finding into the physiological processes and biochemical activities, alongside the validation of meta-gene expression involved in drought stress, further advancing our understanding of molecular mechanisms of the reaction of sorghum to drought stress.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A validation study by integrated analysis of physiological, biochemical, and meta-gene expression responses to drought stress in sorghum (Sorghum bicolor L.).\",\"authors\":\"Hossein Kazemi, Atefeh Sabouri, Ali Aalami, Amin Abedi, Mahnaz Nezamivand-Chegini\",\"doi\":\"10.1007/s00709-025-02112-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sorghum (Sorghum bicolor L.) is a prominent cereal known for its high photosynthetic efficiency and biomass production, serving as a source of food, animal feed, fiber, and biofuels. This study aims to validate identified meta-genes associated with drought stress in sorghum. Two cultivars, Mansour (drought-tolerant) and Pegah (drought-susceptible), were subjected to drought stress at four levels (25%, 50%, 75%, and 100% of field capacity [FC]( During the 4-5 leaf stage in a greenhouse in 2021. The physiological and molecular responses of the sorghum samples were evaluated at 24, 48, 72, and 96 h post-treatment. The expression of five meta-genes was analyzed to validate these candidate genes related to drought stress tolerance in sorghum. Analysis of variance indicated that the main effects of drought, cultivar, and sampling time, as well as their interactions, had highly significant effects (P < 0.01) on most physiological and biochemical traits. The relative expression of the genes SORBI_3002G225100, SORBI_3003G332200, SORBI_3003G368300, SORBI_3010G081800, and SORBI_3004G293500 increased over time under drought stress. Proline levels, ion leakage, soluble sugars, and the activities of catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes increased with the intensity of drought stress and over time. Conversely, the levels of chlorophyll a and b, carotenoids, RWC, leaf surface area, and protein content decreased under drought conditions. These results confirm the relevance of these genes in conferring drought stress tolerance in sorghum. This research provides new finding into the physiological processes and biochemical activities, alongside the validation of meta-gene expression involved in drought stress, further advancing our understanding of molecular mechanisms of the reaction of sorghum to drought stress.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-025-02112-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02112-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高粱(Sorghum bicolor L.)是一种著名的谷物,以其高光合效率和生物质产量而闻名,可作为食物、动物饲料、纤维和生物燃料的来源。本研究旨在验证已鉴定的与高粱干旱胁迫相关的元基因。以抗旱品种曼苏尔(Mansour)和抗旱品种培加(Pegah)为研究对象,于2021年在大棚4-5叶期分别以25%、50%、75%和100%的田间容量水平进行干旱胁迫。分别在处理后24、48、72和96 h对高粱样品进行生理和分子反应评价。通过对5个元基因的表达分析,验证了高粱抗旱相关候选基因的表达。方差分析表明,干旱、品种和取样时间的主要影响及其相互作用具有极显著的影响(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A validation study by integrated analysis of physiological, biochemical, and meta-gene expression responses to drought stress in sorghum (Sorghum bicolor L.).

Sorghum (Sorghum bicolor L.) is a prominent cereal known for its high photosynthetic efficiency and biomass production, serving as a source of food, animal feed, fiber, and biofuels. This study aims to validate identified meta-genes associated with drought stress in sorghum. Two cultivars, Mansour (drought-tolerant) and Pegah (drought-susceptible), were subjected to drought stress at four levels (25%, 50%, 75%, and 100% of field capacity [FC]( During the 4-5 leaf stage in a greenhouse in 2021. The physiological and molecular responses of the sorghum samples were evaluated at 24, 48, 72, and 96 h post-treatment. The expression of five meta-genes was analyzed to validate these candidate genes related to drought stress tolerance in sorghum. Analysis of variance indicated that the main effects of drought, cultivar, and sampling time, as well as their interactions, had highly significant effects (P < 0.01) on most physiological and biochemical traits. The relative expression of the genes SORBI_3002G225100, SORBI_3003G332200, SORBI_3003G368300, SORBI_3010G081800, and SORBI_3004G293500 increased over time under drought stress. Proline levels, ion leakage, soluble sugars, and the activities of catalase, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes increased with the intensity of drought stress and over time. Conversely, the levels of chlorophyll a and b, carotenoids, RWC, leaf surface area, and protein content decreased under drought conditions. These results confirm the relevance of these genes in conferring drought stress tolerance in sorghum. This research provides new finding into the physiological processes and biochemical activities, alongside the validation of meta-gene expression involved in drought stress, further advancing our understanding of molecular mechanisms of the reaction of sorghum to drought stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信