S L Bithell, M A Asif, J Chowdhury, A K Kamiri, F Snijders, S Harden, K L Plett, J M Plett
{"title":"鹰嘴豆优化生物固氮途径的遗传见解及其与抗病育种的相互作用。","authors":"S L Bithell, M A Asif, J Chowdhury, A K Kamiri, F Snijders, S Harden, K L Plett, J M Plett","doi":"10.1111/ppl.70514","DOIUrl":null,"url":null,"abstract":"<p><p>In chickpea (Cicer arietinum), a globally important grain legume, improvements in yield stability are required to address food security and agricultural land loss. One approach is to improve both nutrient acquisition through symbiosis with rhizobial bacteria and biotic stress resistance. To support the simultaneous selection of multiple beneficial traits, we sought to identify quantitative trait loci (QTL) and genes linked to improved plant-microbe symbiosis both under symbiosis-promotive growth conditions and when pathogens are present. Our aims were to use the chickpea-Mesorhizobium rhizobial model to identify QTL associated with biological nitrogen fixation (BNF) and nutrient acquisition and understand factors promotive of sustained BNF under biotic stress through the impact of Phytophthora root rot (PRR) on BNF across chickpea genotypes on host gene expression. Using two chickpea × C. echinospermum recombinant inbred line (RIL) populations, we identified QTL associated with BNF and several associated with macro- and micro-nutrient status of chickpea. From within a set of the most PRR-resistant RIL (n = 70), we successfully identified RIL with both high PRR resistance and N sourced from BNF. In conditions of the tripartite (host:rhizobia:pathogen) interaction, while there was no consistent pathogen impact on the abundance of Mesorhizobium in nodules, PRR-resistant genotypes maintained a higher activity of their N-assimilation genes, while susceptible genotypes repressed these genes. This improved understanding of the genetic support of BNF in chickpea will allow selection for material that maintains higher BNF and is more disease resistant, which together may improve yield stability in chickpea.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 5","pages":"e70514"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443505/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Insights Into Pathways Supporting Optimized Biological Nitrogen Fixation in Chickpea and Their Interaction With Disease Resistance Breeding.\",\"authors\":\"S L Bithell, M A Asif, J Chowdhury, A K Kamiri, F Snijders, S Harden, K L Plett, J M Plett\",\"doi\":\"10.1111/ppl.70514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In chickpea (Cicer arietinum), a globally important grain legume, improvements in yield stability are required to address food security and agricultural land loss. One approach is to improve both nutrient acquisition through symbiosis with rhizobial bacteria and biotic stress resistance. To support the simultaneous selection of multiple beneficial traits, we sought to identify quantitative trait loci (QTL) and genes linked to improved plant-microbe symbiosis both under symbiosis-promotive growth conditions and when pathogens are present. Our aims were to use the chickpea-Mesorhizobium rhizobial model to identify QTL associated with biological nitrogen fixation (BNF) and nutrient acquisition and understand factors promotive of sustained BNF under biotic stress through the impact of Phytophthora root rot (PRR) on BNF across chickpea genotypes on host gene expression. Using two chickpea × C. echinospermum recombinant inbred line (RIL) populations, we identified QTL associated with BNF and several associated with macro- and micro-nutrient status of chickpea. From within a set of the most PRR-resistant RIL (n = 70), we successfully identified RIL with both high PRR resistance and N sourced from BNF. In conditions of the tripartite (host:rhizobia:pathogen) interaction, while there was no consistent pathogen impact on the abundance of Mesorhizobium in nodules, PRR-resistant genotypes maintained a higher activity of their N-assimilation genes, while susceptible genotypes repressed these genes. This improved understanding of the genetic support of BNF in chickpea will allow selection for material that maintains higher BNF and is more disease resistant, which together may improve yield stability in chickpea.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 5\",\"pages\":\"e70514\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70514\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70514","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genetic Insights Into Pathways Supporting Optimized Biological Nitrogen Fixation in Chickpea and Their Interaction With Disease Resistance Breeding.
In chickpea (Cicer arietinum), a globally important grain legume, improvements in yield stability are required to address food security and agricultural land loss. One approach is to improve both nutrient acquisition through symbiosis with rhizobial bacteria and biotic stress resistance. To support the simultaneous selection of multiple beneficial traits, we sought to identify quantitative trait loci (QTL) and genes linked to improved plant-microbe symbiosis both under symbiosis-promotive growth conditions and when pathogens are present. Our aims were to use the chickpea-Mesorhizobium rhizobial model to identify QTL associated with biological nitrogen fixation (BNF) and nutrient acquisition and understand factors promotive of sustained BNF under biotic stress through the impact of Phytophthora root rot (PRR) on BNF across chickpea genotypes on host gene expression. Using two chickpea × C. echinospermum recombinant inbred line (RIL) populations, we identified QTL associated with BNF and several associated with macro- and micro-nutrient status of chickpea. From within a set of the most PRR-resistant RIL (n = 70), we successfully identified RIL with both high PRR resistance and N sourced from BNF. In conditions of the tripartite (host:rhizobia:pathogen) interaction, while there was no consistent pathogen impact on the abundance of Mesorhizobium in nodules, PRR-resistant genotypes maintained a higher activity of their N-assimilation genes, while susceptible genotypes repressed these genes. This improved understanding of the genetic support of BNF in chickpea will allow selection for material that maintains higher BNF and is more disease resistant, which together may improve yield stability in chickpea.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.