Alexandra Florescu, Michelle Zuo, Angela A Wang, Kevin Champagne-Jorgensen, Mohammed A Noor, Lesley A Ward, Erwin van Puijenbroek, Christian Klein, Jennifer L Gommerman
{"title":"进行性多发性硬化症动物模型中硬脑膜和骨髓B细胞的动态变化。","authors":"Alexandra Florescu, Michelle Zuo, Angela A Wang, Kevin Champagne-Jorgensen, Mohammed A Noor, Lesley A Ward, Erwin van Puijenbroek, Christian Klein, Jennifer L Gommerman","doi":"10.1084/jem.20241255","DOIUrl":null,"url":null,"abstract":"<p><p>In multiple sclerosis (MS), the leptomeninges (LM) are populated with immune cell aggregates that correlate with disease progression. The impact of LM inflammation on the adjacent dura is largely unknown. Using a mouse model of MS that induces brain LM inflammation and age-dependent disease progression, we found that encephalitogenic T cells and B220high B cells accumulate substantially in the brain LM and parenchyma of both young and aged mice, while the adjacent dura remains relatively inert. We also observed a population of anti-CD20-resistant B220low B cells in the dura and bone marrow that virtually disappear at disease onset and accumulate in the brain of young mice concomitant with disease remission. In contrast, aged mice show a paucity of brain-resident B220low B cells at the expense of class-switched B220high B cells accompanied by severe, chronic disease. In summary, dynamic changes in the brain, LM, and dural B cells are associated with age-dependent disease severity in an animal model of progressive MS.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 12","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic alterations of dural and bone marrow B cells in an animal model of progressive multiple sclerosis.\",\"authors\":\"Alexandra Florescu, Michelle Zuo, Angela A Wang, Kevin Champagne-Jorgensen, Mohammed A Noor, Lesley A Ward, Erwin van Puijenbroek, Christian Klein, Jennifer L Gommerman\",\"doi\":\"10.1084/jem.20241255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In multiple sclerosis (MS), the leptomeninges (LM) are populated with immune cell aggregates that correlate with disease progression. The impact of LM inflammation on the adjacent dura is largely unknown. Using a mouse model of MS that induces brain LM inflammation and age-dependent disease progression, we found that encephalitogenic T cells and B220high B cells accumulate substantially in the brain LM and parenchyma of both young and aged mice, while the adjacent dura remains relatively inert. We also observed a population of anti-CD20-resistant B220low B cells in the dura and bone marrow that virtually disappear at disease onset and accumulate in the brain of young mice concomitant with disease remission. In contrast, aged mice show a paucity of brain-resident B220low B cells at the expense of class-switched B220high B cells accompanied by severe, chronic disease. In summary, dynamic changes in the brain, LM, and dural B cells are associated with age-dependent disease severity in an animal model of progressive MS.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 12\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241255\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241255","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Dynamic alterations of dural and bone marrow B cells in an animal model of progressive multiple sclerosis.
In multiple sclerosis (MS), the leptomeninges (LM) are populated with immune cell aggregates that correlate with disease progression. The impact of LM inflammation on the adjacent dura is largely unknown. Using a mouse model of MS that induces brain LM inflammation and age-dependent disease progression, we found that encephalitogenic T cells and B220high B cells accumulate substantially in the brain LM and parenchyma of both young and aged mice, while the adjacent dura remains relatively inert. We also observed a population of anti-CD20-resistant B220low B cells in the dura and bone marrow that virtually disappear at disease onset and accumulate in the brain of young mice concomitant with disease remission. In contrast, aged mice show a paucity of brain-resident B220low B cells at the expense of class-switched B220high B cells accompanied by severe, chronic disease. In summary, dynamic changes in the brain, LM, and dural B cells are associated with age-dependent disease severity in an animal model of progressive MS.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.