Yinhao Gao , Yazi Zhou , Liqian Wang , Na Zhang , Weishuai Qin , Wu Meng , Cuixia Zhou
{"title":"基于代谢工程的地衣芽孢杆菌MW03高产2,3-丁二醇和乙酰素协同策略","authors":"Yinhao Gao , Yazi Zhou , Liqian Wang , Na Zhang , Weishuai Qin , Wu Meng , Cuixia Zhou","doi":"10.1016/j.jbiotec.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div><em>Bacillus licheniformis</em> is an efficient platform for 2,3-butanediol (2,3-BD) and acetoin production due to its rapid glucose utilization rate and adaptability to industrial fermentation conditions. Here, we isolated the <em>B. licheniformis</em> strain MW03 with high yield of acetoin and 2,3-BD, which carried genetic mutations in <em>acoR</em> and <em>budC</em>, respectively encoding an acetoin dehydrogenase regulator and meso-2,3-BD dehydrogenase. To further confirm the physiological effects on acetoin and 2,3 BD biosynthesis, gene editing was performed using the CRISPR-Cas9 system, followed by phenotypic screening and genotype validation. The knockout of <em>acoR</em> and <em>budC</em> increased the acetoin maximum titer by 21.2 % and 49.2 %, respectively. Moreover, the optical purity of D-(-)-2,3-BD reached 92.7 % following the knockout of <em>budC</em>. Heterologous expression of <em>acoR</em> from <em>B. licheniformis</em> 2709 in both the wild type and <em>acoR</em> knockout mutant strongly inhibited acetoin accumulation compared to native <em>acoR</em>, which emphasized the regulatory role of AcoR in acetoin accumulation. Conversely, complementation of <em>budC</em> restored the synthesis of meso-2,3-BD synthesis, emphasizing its importance in this process. Overexpression of <em>alsD</em> in the <em>acoR</em> mutant increased the 2,3-BD titer by 61.9 % to 121.97 g/L, while the productivity reached 2.03 g/L·h. Finally, co-expression of <em>bdhA</em> and <em>gldA</em> increased 2,3-BD production by 25.6 %. This study elucidated the dual regulatory roles of <em>acoR</em> and <em>budC</em> in acetoin and 2,3-BD metabolism, establishing a \"knockout-overexpression\" synergic strategy, which offers theoretical support and practical guidance for further strain optimization.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"408 ","pages":"Pages 232-243"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic strategy for high-yield 2,3-butanediol and acetoin production in Bacillus licheniformis MW03 based on metabolic engineering\",\"authors\":\"Yinhao Gao , Yazi Zhou , Liqian Wang , Na Zhang , Weishuai Qin , Wu Meng , Cuixia Zhou\",\"doi\":\"10.1016/j.jbiotec.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Bacillus licheniformis</em> is an efficient platform for 2,3-butanediol (2,3-BD) and acetoin production due to its rapid glucose utilization rate and adaptability to industrial fermentation conditions. Here, we isolated the <em>B. licheniformis</em> strain MW03 with high yield of acetoin and 2,3-BD, which carried genetic mutations in <em>acoR</em> and <em>budC</em>, respectively encoding an acetoin dehydrogenase regulator and meso-2,3-BD dehydrogenase. To further confirm the physiological effects on acetoin and 2,3 BD biosynthesis, gene editing was performed using the CRISPR-Cas9 system, followed by phenotypic screening and genotype validation. The knockout of <em>acoR</em> and <em>budC</em> increased the acetoin maximum titer by 21.2 % and 49.2 %, respectively. Moreover, the optical purity of D-(-)-2,3-BD reached 92.7 % following the knockout of <em>budC</em>. Heterologous expression of <em>acoR</em> from <em>B. licheniformis</em> 2709 in both the wild type and <em>acoR</em> knockout mutant strongly inhibited acetoin accumulation compared to native <em>acoR</em>, which emphasized the regulatory role of AcoR in acetoin accumulation. Conversely, complementation of <em>budC</em> restored the synthesis of meso-2,3-BD synthesis, emphasizing its importance in this process. Overexpression of <em>alsD</em> in the <em>acoR</em> mutant increased the 2,3-BD titer by 61.9 % to 121.97 g/L, while the productivity reached 2.03 g/L·h. Finally, co-expression of <em>bdhA</em> and <em>gldA</em> increased 2,3-BD production by 25.6 %. This study elucidated the dual regulatory roles of <em>acoR</em> and <em>budC</em> in acetoin and 2,3-BD metabolism, establishing a \\\"knockout-overexpression\\\" synergic strategy, which offers theoretical support and practical guidance for further strain optimization.</div></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"408 \",\"pages\":\"Pages 232-243\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165625002342\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625002342","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Synergistic strategy for high-yield 2,3-butanediol and acetoin production in Bacillus licheniformis MW03 based on metabolic engineering
Bacillus licheniformis is an efficient platform for 2,3-butanediol (2,3-BD) and acetoin production due to its rapid glucose utilization rate and adaptability to industrial fermentation conditions. Here, we isolated the B. licheniformis strain MW03 with high yield of acetoin and 2,3-BD, which carried genetic mutations in acoR and budC, respectively encoding an acetoin dehydrogenase regulator and meso-2,3-BD dehydrogenase. To further confirm the physiological effects on acetoin and 2,3 BD biosynthesis, gene editing was performed using the CRISPR-Cas9 system, followed by phenotypic screening and genotype validation. The knockout of acoR and budC increased the acetoin maximum titer by 21.2 % and 49.2 %, respectively. Moreover, the optical purity of D-(-)-2,3-BD reached 92.7 % following the knockout of budC. Heterologous expression of acoR from B. licheniformis 2709 in both the wild type and acoR knockout mutant strongly inhibited acetoin accumulation compared to native acoR, which emphasized the regulatory role of AcoR in acetoin accumulation. Conversely, complementation of budC restored the synthesis of meso-2,3-BD synthesis, emphasizing its importance in this process. Overexpression of alsD in the acoR mutant increased the 2,3-BD titer by 61.9 % to 121.97 g/L, while the productivity reached 2.03 g/L·h. Finally, co-expression of bdhA and gldA increased 2,3-BD production by 25.6 %. This study elucidated the dual regulatory roles of acoR and budC in acetoin and 2,3-BD metabolism, establishing a "knockout-overexpression" synergic strategy, which offers theoretical support and practical guidance for further strain optimization.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.