Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang
{"title":"从结构化病历记录中学习嵌入的因果转换器和用于复杂疾病风险预测的多源数据集成。","authors":"Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang","doi":"10.1007/s12539-025-00749-9","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Transformer for Learning Embeddings from Structured Medical History Records and Multi-Source Data Integration for Complex Disease Risk Prediction.\",\"authors\":\"Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang\",\"doi\":\"10.1007/s12539-025-00749-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00749-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00749-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Causal Transformer for Learning Embeddings from Structured Medical History Records and Multi-Source Data Integration for Complex Disease Risk Prediction.
Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.