从结构化病历记录中学习嵌入的因果转换器和用于复杂疾病风险预测的多源数据集成。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang
{"title":"从结构化病历记录中学习嵌入的因果转换器和用于复杂疾病风险预测的多源数据集成。","authors":"Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang","doi":"10.1007/s12539-025-00749-9","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Transformer for Learning Embeddings from Structured Medical History Records and Multi-Source Data Integration for Complex Disease Risk Prediction.\",\"authors\":\"Zeming Li, Yu Xu, Debajyoti Chowdhury, Hip Fung Yip, Chonghao Wang, Lu Zhang\",\"doi\":\"10.1007/s12539-025-00749-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00749-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00749-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的疾病风险预测模型主要依赖于统计算法,往往侧重于遗传因素或一组有限的生活方式因素来估计疾病发作的风险。最近,出现了更全面的方法,将遗传因素与其他生活方式因素(如酒精摄入量)和身体特征(如体重指数、年龄)结合起来,以提高预测的准确性。由于复杂疾病的发病往往伴随着合并症的发生,因此纳入病史记录是改善风险预测的一个关键但尚未得到充分探索的途径。在这项研究中,我们提出了一个新的框架,MIDRP(疾病风险预测的多源集成),它结合了遗传变异、生活方式因素、身体属性和病史记录,以实现更稳健和准确的预测。我们的方法的核心是因果转换器架构,专门用于从病史记录中提取和解释细微的模式。在实验中,我们将MIDRP与LDPred2、随机森林、多层感知、逻辑回归、AdaBoost、疾病胶囊、EIR和Med-Bert等几种基线进行了比较,使用来自英国生物银行的数据,对冠状动脉疾病、2型糖尿病和乳腺癌三种复杂疾病进行了研究。我们的方法达到了最先进的性能,AUROC得分分别为0.783、0.841和0.784,显示了其在复杂疾病风险预测领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Transformer for Learning Embeddings from Structured Medical History Records and Multi-Source Data Integration for Complex Disease Risk Prediction.

Traditional disease risk prediction models predominantly rely on statistical algorithms and often focus on genetic factors or a limited set of lifestyle factors to estimate the risk of disease onset. Recently, more comprehensive approaches have emerged that integrate genetic factors with additional lifestyle factors (e.g., alcohol intake) and physical features (e.g., body mass index, age) to increase predictive accuracy. Since the onset of complex diseases is often accompanied by the occurrence of comorbidities, incorporating medical history records is a critical yet underexplored avenue for improving risk prediction. In this study, we propose a novel framework, MIDRP (Multi-source Integration for Disease Risk Prediction), which incorporates genetic variants, lifestyle factors, physical attributes, and medical history records to achieve more robust and accurate predictions. At the heart of our approach lies a causal Transformer architecture, specifically designed to extract and interpret nuanced patterns from medical history records. In the experiments, we compared MIDRP with several baselines, including LDPred2, random forest, multilayer perception, logistic regression, AdaBoost, DiseaseCapsule, EIR, and Med-Bert, on three complex diseases Coronary Artery Disease, Type 2 Diabetes, and Breast Cancer using data from the UK Biobank. Our method achieved state-of-the-art performance, AUROC scores of 0.783, 0.841, and 0.784, respectively, demonstrating its potential in the field of complex disease risk prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信