Abbie S Ireland, Daniel A Xie, Sarah B Hawgood, Margaret W Barbier, Lisa Y Zuo, Benjamin E Hanna, Scarlett Lucas-Randolph, Darren R Tyson, Benjamin L Witt, Ramaswamy Govindan, Afshin Dowlati, Justin C Moser, Anish Thomas, Sonam Puri, Charles M Rudin, Joseph M Chan, Andrew Elliott, Trudy G Oliver
{"title":"基底细胞起源解决癌症中神经内分泌簇谱系的可塑性。","authors":"Abbie S Ireland, Daniel A Xie, Sarah B Hawgood, Margaret W Barbier, Lisa Y Zuo, Benjamin E Hanna, Scarlett Lucas-Randolph, Darren R Tyson, Benjamin L Witt, Ramaswamy Govindan, Afshin Dowlati, Justin C Moser, Anish Thomas, Sonam Puri, Charles M Rudin, Joseph M Chan, Andrew Elliott, Trudy G Oliver","doi":"10.1038/s41586-025-09503-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroendocrine and tuft cells are rare chemosensory epithelial lineages defined by the expression of ASCL1 and POU2F3 transcription factors, respectively. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes<sup>1-9</sup>. The mechanisms driving neuroendocrine-tuft tumour heterogeneity and the origins of tuft-like cancers are unknown. Using multiple genetically engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovered unexpected transcriptional states, including an Atoh1<sup>+</sup> state, and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, the introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss and ASCL1 suppression, cooperates to promote tuft-like tumours. Transcriptomics of 944 human SCLCs revealed a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate notable conservation between cancer states and normal basal cell injury response mechanisms<sup>10-13</sup>. Together, these data indicate that the basal cell is a probable origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity, offering new insights for targeting lineage plasticity.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":" ","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer.\",\"authors\":\"Abbie S Ireland, Daniel A Xie, Sarah B Hawgood, Margaret W Barbier, Lisa Y Zuo, Benjamin E Hanna, Scarlett Lucas-Randolph, Darren R Tyson, Benjamin L Witt, Ramaswamy Govindan, Afshin Dowlati, Justin C Moser, Anish Thomas, Sonam Puri, Charles M Rudin, Joseph M Chan, Andrew Elliott, Trudy G Oliver\",\"doi\":\"10.1038/s41586-025-09503-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroendocrine and tuft cells are rare chemosensory epithelial lineages defined by the expression of ASCL1 and POU2F3 transcription factors, respectively. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes<sup>1-9</sup>. The mechanisms driving neuroendocrine-tuft tumour heterogeneity and the origins of tuft-like cancers are unknown. Using multiple genetically engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovered unexpected transcriptional states, including an Atoh1<sup>+</sup> state, and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, the introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss and ASCL1 suppression, cooperates to promote tuft-like tumours. Transcriptomics of 944 human SCLCs revealed a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate notable conservation between cancer states and normal basal cell injury response mechanisms<sup>10-13</sup>. Together, these data indicate that the basal cell is a probable origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity, offering new insights for targeting lineage plasticity.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09503-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09503-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer.
Neuroendocrine and tuft cells are rare chemosensory epithelial lineages defined by the expression of ASCL1 and POU2F3 transcription factors, respectively. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes1-9. The mechanisms driving neuroendocrine-tuft tumour heterogeneity and the origins of tuft-like cancers are unknown. Using multiple genetically engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovered unexpected transcriptional states, including an Atoh1+ state, and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, the introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss and ASCL1 suppression, cooperates to promote tuft-like tumours. Transcriptomics of 944 human SCLCs revealed a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate notable conservation between cancer states and normal basal cell injury response mechanisms10-13. Together, these data indicate that the basal cell is a probable origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity, offering new insights for targeting lineage plasticity.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.