{"title":"内皮GATAD1通过小泡介导的胞吞作用加重缺血性卒中血脑屏障功能障碍。","authors":"Lizhen Fan, Hui Liu, Shanshan Li, Lingling Li, Zhi Zhang, Pinyi Liu, Haiyan Yang, Shengnan Xia, Xiang Cao, Chun Wang, Yun Xu","doi":"10.1007/s12264-025-01507-z","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-brain barrier (BBB) dysfunction represents a critical pathological manifestation in exacerbating ischemic stroke, contributing to neuronal death, edema formation, and unfavorable clinical outcomes. GATA zinc finger domain-containing 1 (GATAD1) is recognized as a critical transcription factor in cardiac development and cardiovascular disease. However, the role of GATAD1 in regulating BBB function and ischemic stroke remains elusive. Here, we found that GATAD1 was upregulated in cerebral endothelial cells (ECs) following ischemic stroke in mice. EC-specific Gatad1 deficiency demonstrated remarkable neuroprotection, manifested by reduced infarct volumes, ameliorated BBB dysfunction, and improved neurological outcomes following experimental stroke. Mechanistic investigations revealed that GATAD1 was involved in regulating CD36 expression, thereby modulating caveolae-mediated transcytosis in cerebral ECs. These findings established GATAD1 as a novel regulator of BBB permeability and a potential therapeutic target for ischemic stroke intervention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial GATAD1 Exacerbates Blood-brain Barrier Dysfunction in Ischemic Stroke through Caveolae-mediated Transcytosis.\",\"authors\":\"Lizhen Fan, Hui Liu, Shanshan Li, Lingling Li, Zhi Zhang, Pinyi Liu, Haiyan Yang, Shengnan Xia, Xiang Cao, Chun Wang, Yun Xu\",\"doi\":\"10.1007/s12264-025-01507-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood-brain barrier (BBB) dysfunction represents a critical pathological manifestation in exacerbating ischemic stroke, contributing to neuronal death, edema formation, and unfavorable clinical outcomes. GATA zinc finger domain-containing 1 (GATAD1) is recognized as a critical transcription factor in cardiac development and cardiovascular disease. However, the role of GATAD1 in regulating BBB function and ischemic stroke remains elusive. Here, we found that GATAD1 was upregulated in cerebral endothelial cells (ECs) following ischemic stroke in mice. EC-specific Gatad1 deficiency demonstrated remarkable neuroprotection, manifested by reduced infarct volumes, ameliorated BBB dysfunction, and improved neurological outcomes following experimental stroke. Mechanistic investigations revealed that GATAD1 was involved in regulating CD36 expression, thereby modulating caveolae-mediated transcytosis in cerebral ECs. These findings established GATAD1 as a novel regulator of BBB permeability and a potential therapeutic target for ischemic stroke intervention.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01507-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01507-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Endothelial GATAD1 Exacerbates Blood-brain Barrier Dysfunction in Ischemic Stroke through Caveolae-mediated Transcytosis.
Blood-brain barrier (BBB) dysfunction represents a critical pathological manifestation in exacerbating ischemic stroke, contributing to neuronal death, edema formation, and unfavorable clinical outcomes. GATA zinc finger domain-containing 1 (GATAD1) is recognized as a critical transcription factor in cardiac development and cardiovascular disease. However, the role of GATAD1 in regulating BBB function and ischemic stroke remains elusive. Here, we found that GATAD1 was upregulated in cerebral endothelial cells (ECs) following ischemic stroke in mice. EC-specific Gatad1 deficiency demonstrated remarkable neuroprotection, manifested by reduced infarct volumes, ameliorated BBB dysfunction, and improved neurological outcomes following experimental stroke. Mechanistic investigations revealed that GATAD1 was involved in regulating CD36 expression, thereby modulating caveolae-mediated transcytosis in cerebral ECs. These findings established GATAD1 as a novel regulator of BBB permeability and a potential therapeutic target for ischemic stroke intervention.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.