{"title":"肠道γδ t细胞失调及其对免疫介导疾病的影响","authors":"Dilys Santillo, Evangelos Bellos, Vanessa Sancho-Shimizu","doi":"10.1242/dmm.052439","DOIUrl":null,"url":null,"abstract":"<p><p>Multisystem inflammatory syndrome in children (MIS-C) is a rare condition associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterised by systemic inflammation and T-cell dysfunction. A subset of patients with MIS-C were found to harbour rare variants in the gene BTNL8 that disrupt BTNL8-BTNL3 heterodimer formation, likely leading to inadequate γδ T-cell regulation and subsequent disrupted gut homeostasis. MIS-C shares clinical features with Kawasaki disease and similar mechanisms of pathogenesis with inflammatory bowel disease, despite these diseases being clinically distinct entities. We explore the common link between these diseases: the potentially critical role gut immunity plays in the initiation and persistence of disease through the tight regulation of γδ T cells via BTNL8 and BTNL3. Understanding the role of BTNL8 in the context of the overlap between these conditions may aid preventative measures and treatment of these conditions.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":"18 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unravelling γδ T-cell dysregulation in the gut and its implications for immune-mediated diseases.\",\"authors\":\"Dilys Santillo, Evangelos Bellos, Vanessa Sancho-Shimizu\",\"doi\":\"10.1242/dmm.052439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multisystem inflammatory syndrome in children (MIS-C) is a rare condition associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterised by systemic inflammation and T-cell dysfunction. A subset of patients with MIS-C were found to harbour rare variants in the gene BTNL8 that disrupt BTNL8-BTNL3 heterodimer formation, likely leading to inadequate γδ T-cell regulation and subsequent disrupted gut homeostasis. MIS-C shares clinical features with Kawasaki disease and similar mechanisms of pathogenesis with inflammatory bowel disease, despite these diseases being clinically distinct entities. We explore the common link between these diseases: the potentially critical role gut immunity plays in the initiation and persistence of disease through the tight regulation of γδ T cells via BTNL8 and BTNL3. Understanding the role of BTNL8 in the context of the overlap between these conditions may aid preventative measures and treatment of these conditions.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052439\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unravelling γδ T-cell dysregulation in the gut and its implications for immune-mediated diseases.
Multisystem inflammatory syndrome in children (MIS-C) is a rare condition associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterised by systemic inflammation and T-cell dysfunction. A subset of patients with MIS-C were found to harbour rare variants in the gene BTNL8 that disrupt BTNL8-BTNL3 heterodimer formation, likely leading to inadequate γδ T-cell regulation and subsequent disrupted gut homeostasis. MIS-C shares clinical features with Kawasaki disease and similar mechanisms of pathogenesis with inflammatory bowel disease, despite these diseases being clinically distinct entities. We explore the common link between these diseases: the potentially critical role gut immunity plays in the initiation and persistence of disease through the tight regulation of γδ T cells via BTNL8 and BTNL3. Understanding the role of BTNL8 in the context of the overlap between these conditions may aid preventative measures and treatment of these conditions.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.