Jingjing Qi, Qian Hu, Yang Xi, Zhao Yang, Mengru Xu, Liang Li, Lili Bai, Hehe Liu
{"title":"鸭嘴豆色遗传变异的全基因组关联研究。","authors":"Jingjing Qi, Qian Hu, Yang Xi, Zhao Yang, Mengru Xu, Liang Li, Lili Bai, Hehe Liu","doi":"10.1111/age.70040","DOIUrl":null,"url":null,"abstract":"<p>The beak bean, found only in waterfowl and Galliformes, aids in foraging, self-defense and pecking hard objects. Its rich coloration results from prolonged evolutionary adaptation. This study analyzed beak bean phenotypes of duck at 10, 20, 30 and 40 days of age, revealing that the most common type is the black beak bean, characterized by melanin deposition on the beak surface. This study performed single nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) to investigate the genetic basis of beak bean color, identifying signals on chromosome 1. The copy number variation region-based GWAS revealed a consistent candidate region overlapping with the SNP-based GWAS signals, further supporting the importance of this genomic region. Locus zoom analysis further refined the candidate regions to 48.5–50.5 and 50.8–52.8 Mb. Functional enrichment analysis highlighted six candidate genes within these regions: <i>KITLG</i>, <i>DUSP6</i>, <i>GALNT4</i>, <i>MGAT4C</i>, <i>ATP2B1</i> and <i>NTS</i>. Notably, <i>KITLG</i> and <i>DUSP6</i>, which are linked to melanin production, were identified as key candidate genes for beak bean color. Our finding revealed the genetic basis of the bean color traits for the first time in ducks, providing a theoretical foundation and technological framework for enhancing duck beak coloration.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"56 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic variations for bean color of duck beak revealed by genome-wide association study\",\"authors\":\"Jingjing Qi, Qian Hu, Yang Xi, Zhao Yang, Mengru Xu, Liang Li, Lili Bai, Hehe Liu\",\"doi\":\"10.1111/age.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The beak bean, found only in waterfowl and Galliformes, aids in foraging, self-defense and pecking hard objects. Its rich coloration results from prolonged evolutionary adaptation. This study analyzed beak bean phenotypes of duck at 10, 20, 30 and 40 days of age, revealing that the most common type is the black beak bean, characterized by melanin deposition on the beak surface. This study performed single nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) to investigate the genetic basis of beak bean color, identifying signals on chromosome 1. The copy number variation region-based GWAS revealed a consistent candidate region overlapping with the SNP-based GWAS signals, further supporting the importance of this genomic region. Locus zoom analysis further refined the candidate regions to 48.5–50.5 and 50.8–52.8 Mb. Functional enrichment analysis highlighted six candidate genes within these regions: <i>KITLG</i>, <i>DUSP6</i>, <i>GALNT4</i>, <i>MGAT4C</i>, <i>ATP2B1</i> and <i>NTS</i>. Notably, <i>KITLG</i> and <i>DUSP6</i>, which are linked to melanin production, were identified as key candidate genes for beak bean color. Our finding revealed the genetic basis of the bean color traits for the first time in ducks, providing a theoretical foundation and technological framework for enhancing duck beak coloration.</p>\",\"PeriodicalId\":7905,\"journal\":{\"name\":\"Animal genetics\",\"volume\":\"56 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/age.70040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.70040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Genetic variations for bean color of duck beak revealed by genome-wide association study
The beak bean, found only in waterfowl and Galliformes, aids in foraging, self-defense and pecking hard objects. Its rich coloration results from prolonged evolutionary adaptation. This study analyzed beak bean phenotypes of duck at 10, 20, 30 and 40 days of age, revealing that the most common type is the black beak bean, characterized by melanin deposition on the beak surface. This study performed single nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) to investigate the genetic basis of beak bean color, identifying signals on chromosome 1. The copy number variation region-based GWAS revealed a consistent candidate region overlapping with the SNP-based GWAS signals, further supporting the importance of this genomic region. Locus zoom analysis further refined the candidate regions to 48.5–50.5 and 50.8–52.8 Mb. Functional enrichment analysis highlighted six candidate genes within these regions: KITLG, DUSP6, GALNT4, MGAT4C, ATP2B1 and NTS. Notably, KITLG and DUSP6, which are linked to melanin production, were identified as key candidate genes for beak bean color. Our finding revealed the genetic basis of the bean color traits for the first time in ducks, providing a theoretical foundation and technological framework for enhancing duck beak coloration.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.