{"title":"卤素取代基性质和位置对间卤苯甲酸类卡马西平共晶结构和能量性质的影响:双途径合成研究。","authors":"Artur Mirocki, Mattia Lopresti","doi":"10.1002/cplu.202500474","DOIUrl":null,"url":null,"abstract":"<p><p>Crystal engineering provides effective strategies to produce pharmaceutical cocrystals, aimed at enhancing the physicochemical properties of active pharmaceutical ingredients. Herein, the structural and energetic properties of carbamazepine cocrystals with meta-chlorobenzoic, meta-bromobenzoic, and meta-iodobenzoic acids are examined in depth, with particular focus on the influence of halogen substitution. A comparative assessment of solution-based crystallization and mechanochemical synthesis via liquid-assisted grinding provides insight into the viability of different synthetic methodologies. The crystallographic analysis reveals isostructurality among the three cocrystals, with lattice stability being modulated by the increasing atomic radius of the halogen substituent. Complementary techniques, including thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Hirshfeld surface analysis, further elucidate the intermolecular forces driving the formation of these crystalline phases. The lattice energy calculations offer a quantitative perspective on the role of halogen substitution in stabilization, enriching the understanding of fundamental crystal engineering principles relevant to pharmaceutical development.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500474"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Halogen Substituent Nature and Position on the Structural and Energetic Properties of Carbamazepine Cocrystals with Meta-Halobenzoic Acids: A Two-Pathway Synthesis Study.\",\"authors\":\"Artur Mirocki, Mattia Lopresti\",\"doi\":\"10.1002/cplu.202500474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crystal engineering provides effective strategies to produce pharmaceutical cocrystals, aimed at enhancing the physicochemical properties of active pharmaceutical ingredients. Herein, the structural and energetic properties of carbamazepine cocrystals with meta-chlorobenzoic, meta-bromobenzoic, and meta-iodobenzoic acids are examined in depth, with particular focus on the influence of halogen substitution. A comparative assessment of solution-based crystallization and mechanochemical synthesis via liquid-assisted grinding provides insight into the viability of different synthetic methodologies. The crystallographic analysis reveals isostructurality among the three cocrystals, with lattice stability being modulated by the increasing atomic radius of the halogen substituent. Complementary techniques, including thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Hirshfeld surface analysis, further elucidate the intermolecular forces driving the formation of these crystalline phases. The lattice energy calculations offer a quantitative perspective on the role of halogen substitution in stabilization, enriching the understanding of fundamental crystal engineering principles relevant to pharmaceutical development.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202500474\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500474\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500474","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of Halogen Substituent Nature and Position on the Structural and Energetic Properties of Carbamazepine Cocrystals with Meta-Halobenzoic Acids: A Two-Pathway Synthesis Study.
Crystal engineering provides effective strategies to produce pharmaceutical cocrystals, aimed at enhancing the physicochemical properties of active pharmaceutical ingredients. Herein, the structural and energetic properties of carbamazepine cocrystals with meta-chlorobenzoic, meta-bromobenzoic, and meta-iodobenzoic acids are examined in depth, with particular focus on the influence of halogen substitution. A comparative assessment of solution-based crystallization and mechanochemical synthesis via liquid-assisted grinding provides insight into the viability of different synthetic methodologies. The crystallographic analysis reveals isostructurality among the three cocrystals, with lattice stability being modulated by the increasing atomic radius of the halogen substituent. Complementary techniques, including thermogravimetry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Hirshfeld surface analysis, further elucidate the intermolecular forces driving the formation of these crystalline phases. The lattice energy calculations offer a quantitative perspective on the role of halogen substitution in stabilization, enriching the understanding of fundamental crystal engineering principles relevant to pharmaceutical development.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.