氢-氘交换定义了配体诱导的酿酒酵母III类生物素蛋白连接酶的构象变化。

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-09-17 DOI:10.1002/cbic.202500439
Louise M Sternicki, Tara L Pukala, Kamila J Pacholarz, Perdita Barran, Grant W Booker, Steven W Polyak, Kate L Wegener
{"title":"氢-氘交换定义了配体诱导的酿酒酵母III类生物素蛋白连接酶的构象变化。","authors":"Louise M Sternicki, Tara L Pukala, Kamila J Pacholarz, Perdita Barran, Grant W Booker, Steven W Polyak, Kate L Wegener","doi":"10.1002/cbic.202500439","DOIUrl":null,"url":null,"abstract":"<p><p>Biotin protein ligase (BPL) catalyzes the covalent attachment of biotin onto biotin-dependent enzymes, where it functions as an essential cofactor. Eukaryotic BPLs are distinct due to the presence of a large N-terminal extension to the conserved catalytic domain and C-terminal cap. No high-resolution structures of a eukaryotic BPL have been solved; however, previous functional studies revealed the N-terminal extension interacts with the biotinylation substrate. Mass spectrometry (MS) and complementary techniques were utilized to investigate the structure of the yeast Saccharomyces cerevisiae BPL (ScBPL). Lower resolution techniques suggested holo-ScBPL had a more compact structure and sampled fewer conformational states. In addition, solution-phase and a charge state dependent gas-phase stabilization was observed. Hydrogen-deuterium exchange (HDX) MS provided experimental validation of the AlphaFold predicted structure of ScBPL, with a folded domain structurally homologous to a glutamine amidotransferase identified in the N-terminal extension, and a mostly homologous catalytic domain to that of other species' BPLs. Further HDX analyses identified localized conformational changes in the ScBPL active site and N-terminal domain that occur concomitantly with ligand binding. These data provide novel insights into the unique structure of a class III BPL and how ligands influence this structure for catalysis of protein biotinylation.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500439"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-Deuterium Exchange Defines Ligand-Induced Conformational Changes to the Class III Biotin Protein Ligase from Saccharomyces cerevisiae.\",\"authors\":\"Louise M Sternicki, Tara L Pukala, Kamila J Pacholarz, Perdita Barran, Grant W Booker, Steven W Polyak, Kate L Wegener\",\"doi\":\"10.1002/cbic.202500439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biotin protein ligase (BPL) catalyzes the covalent attachment of biotin onto biotin-dependent enzymes, where it functions as an essential cofactor. Eukaryotic BPLs are distinct due to the presence of a large N-terminal extension to the conserved catalytic domain and C-terminal cap. No high-resolution structures of a eukaryotic BPL have been solved; however, previous functional studies revealed the N-terminal extension interacts with the biotinylation substrate. Mass spectrometry (MS) and complementary techniques were utilized to investigate the structure of the yeast Saccharomyces cerevisiae BPL (ScBPL). Lower resolution techniques suggested holo-ScBPL had a more compact structure and sampled fewer conformational states. In addition, solution-phase and a charge state dependent gas-phase stabilization was observed. Hydrogen-deuterium exchange (HDX) MS provided experimental validation of the AlphaFold predicted structure of ScBPL, with a folded domain structurally homologous to a glutamine amidotransferase identified in the N-terminal extension, and a mostly homologous catalytic domain to that of other species' BPLs. Further HDX analyses identified localized conformational changes in the ScBPL active site and N-terminal domain that occur concomitantly with ligand binding. These data provide novel insights into the unique structure of a class III BPL and how ligands influence this structure for catalysis of protein biotinylation.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202500439\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500439\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500439","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物素蛋白连接酶(BPL)催化生物素与生物素依赖酶的共价连接,在生物素依赖酶中起重要的辅助因子作用。真核生物的BPL是不同的,因为在保守的催化结构域中存在一个大的n端延伸和c端帽。真核生物BPL的高分辨率结构尚未得到解决;然而,先前的功能研究表明,n端延伸与生物素化底物相互作用。采用质谱法和互补技术对酿酒酵母BPL (Saccharomyces cerevisiae BPL)的结构进行了研究。低分辨率技术表明,holo-ScBPL具有更紧凑的结构和更少的构象态。此外,还观察到溶液相和电荷态依赖的气相稳定。氢-氘交换(HDX)质谱实验验证了AlphaFold预测的ScBPL结构,其折叠结构域与n端延伸的谷氨酰胺氨基转移酶结构同源,并且与其他物种bpl的催化结构域基本同源。进一步的HDX分析发现,随着配体结合,ScBPL活性位点和n端结构域发生了局部构象变化。这些数据为III类BPL的独特结构以及配体如何影响该结构以催化蛋白质生物素化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen-Deuterium Exchange Defines Ligand-Induced Conformational Changes to the Class III Biotin Protein Ligase from Saccharomyces cerevisiae.

Biotin protein ligase (BPL) catalyzes the covalent attachment of biotin onto biotin-dependent enzymes, where it functions as an essential cofactor. Eukaryotic BPLs are distinct due to the presence of a large N-terminal extension to the conserved catalytic domain and C-terminal cap. No high-resolution structures of a eukaryotic BPL have been solved; however, previous functional studies revealed the N-terminal extension interacts with the biotinylation substrate. Mass spectrometry (MS) and complementary techniques were utilized to investigate the structure of the yeast Saccharomyces cerevisiae BPL (ScBPL). Lower resolution techniques suggested holo-ScBPL had a more compact structure and sampled fewer conformational states. In addition, solution-phase and a charge state dependent gas-phase stabilization was observed. Hydrogen-deuterium exchange (HDX) MS provided experimental validation of the AlphaFold predicted structure of ScBPL, with a folded domain structurally homologous to a glutamine amidotransferase identified in the N-terminal extension, and a mostly homologous catalytic domain to that of other species' BPLs. Further HDX analyses identified localized conformational changes in the ScBPL active site and N-terminal domain that occur concomitantly with ligand binding. These data provide novel insights into the unique structure of a class III BPL and how ligands influence this structure for catalysis of protein biotinylation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信