Maria G Fois, Seppe Bormans, Thijs Vandenryt, Alexander P M Guttenplan, Yousra Alaoui Selsouli, Clemens van Blitterswijk, Zeinab Tahmasebi Birgani, Stefan Giselbrecht, Pamela Habibović, Ronald Thoelen, Roman K Truckenmüller
{"title":"利用非法拉第电阻抗谱实时监测杂交细胞-微生物材料球体的形成和培养。","authors":"Maria G Fois, Seppe Bormans, Thijs Vandenryt, Alexander P M Guttenplan, Yousra Alaoui Selsouli, Clemens van Blitterswijk, Zeinab Tahmasebi Birgani, Stefan Giselbrecht, Pamela Habibović, Ronald Thoelen, Roman K Truckenmüller","doi":"10.1021/acsbiomaterials.5c00402","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular spheroids are considered a popular option for modeling healthy and diseased tissues <i>in vitro</i> and as injectable therapies. The formation and culture of spheroids can make use of different three-dimensional (3D) culture platforms, but the spheroids' analysis often has to rely on endpoint assays. In this study, we propose a microfluidic bioreactor to culture and nondestructively monitor human mesenchymal stem cell (hMSC) spheroids over time using non-Faradaic electr(ochem)ical impedance spectroscopy (EIS). For this, an array of porous microwells thermoformed from ion track-etched thin films and a pair of sensing electrodes from transparent indium tin oxide are integrated into the flow and culture chamber of the bioreactor. To measure the spheroid's electrical properties, the electrodes are connected to a frequency response analyzer (FRA), with a multiplexer in between to enable the operation of more than one bioreactor at the FRA at the same time. We find differences between the complex resistance/impedance and/or capacitance data of a reference condition without cells, a two-dimensional (2D) hMSC culture, hMSC spheroids, and hybrid spheroids aggregated from hMSCs and titanium or hydroxyapatite microparticles. We also found differences between different culture durations. These results suggest that our device can sense the presence and spatial arrangement of cells and micro(sized) biomaterials as a function of time.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Monitoring of the Formation and Culture of Hybrid Cell-Microbiomaterial Spheroids Using Non-Faradaic Electrical Impedance Spectroscopy.\",\"authors\":\"Maria G Fois, Seppe Bormans, Thijs Vandenryt, Alexander P M Guttenplan, Yousra Alaoui Selsouli, Clemens van Blitterswijk, Zeinab Tahmasebi Birgani, Stefan Giselbrecht, Pamela Habibović, Ronald Thoelen, Roman K Truckenmüller\",\"doi\":\"10.1021/acsbiomaterials.5c00402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular spheroids are considered a popular option for modeling healthy and diseased tissues <i>in vitro</i> and as injectable therapies. The formation and culture of spheroids can make use of different three-dimensional (3D) culture platforms, but the spheroids' analysis often has to rely on endpoint assays. In this study, we propose a microfluidic bioreactor to culture and nondestructively monitor human mesenchymal stem cell (hMSC) spheroids over time using non-Faradaic electr(ochem)ical impedance spectroscopy (EIS). For this, an array of porous microwells thermoformed from ion track-etched thin films and a pair of sensing electrodes from transparent indium tin oxide are integrated into the flow and culture chamber of the bioreactor. To measure the spheroid's electrical properties, the electrodes are connected to a frequency response analyzer (FRA), with a multiplexer in between to enable the operation of more than one bioreactor at the FRA at the same time. We find differences between the complex resistance/impedance and/or capacitance data of a reference condition without cells, a two-dimensional (2D) hMSC culture, hMSC spheroids, and hybrid spheroids aggregated from hMSCs and titanium or hydroxyapatite microparticles. We also found differences between different culture durations. These results suggest that our device can sense the presence and spatial arrangement of cells and micro(sized) biomaterials as a function of time.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00402\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Real-Time Monitoring of the Formation and Culture of Hybrid Cell-Microbiomaterial Spheroids Using Non-Faradaic Electrical Impedance Spectroscopy.
Cellular spheroids are considered a popular option for modeling healthy and diseased tissues in vitro and as injectable therapies. The formation and culture of spheroids can make use of different three-dimensional (3D) culture platforms, but the spheroids' analysis often has to rely on endpoint assays. In this study, we propose a microfluidic bioreactor to culture and nondestructively monitor human mesenchymal stem cell (hMSC) spheroids over time using non-Faradaic electr(ochem)ical impedance spectroscopy (EIS). For this, an array of porous microwells thermoformed from ion track-etched thin films and a pair of sensing electrodes from transparent indium tin oxide are integrated into the flow and culture chamber of the bioreactor. To measure the spheroid's electrical properties, the electrodes are connected to a frequency response analyzer (FRA), with a multiplexer in between to enable the operation of more than one bioreactor at the FRA at the same time. We find differences between the complex resistance/impedance and/or capacitance data of a reference condition without cells, a two-dimensional (2D) hMSC culture, hMSC spheroids, and hybrid spheroids aggregated from hMSCs and titanium or hydroxyapatite microparticles. We also found differences between different culture durations. These results suggest that our device can sense the presence and spatial arrangement of cells and micro(sized) biomaterials as a function of time.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture