(2R,3S)-2,3-二羟基-2,3-二氢苯甲酸酯的生物技术生产、分离与表征

IF 5.2 2区 生物学
Martina Kiel, Israel Barrantes, Dietmar H. Pieper, Karl-Heinrich Engesser
{"title":"(2R,3S)-2,3-二羟基-2,3-二氢苯甲酸酯的生物技术生产、分离与表征","authors":"Martina Kiel,&nbsp;Israel Barrantes,&nbsp;Dietmar H. Pieper,&nbsp;Karl-Heinrich Engesser","doi":"10.1111/1751-7915.70228","DOIUrl":null,"url":null,"abstract":"<p>Bacterial Rieske non-heme iron oxygenases catalyse the transformation of a wide range of aromatic compounds to vicinal <i>cis</i>-dihydrodiols. Such compounds have been successfully applied in chemoenzymatic synthetic routes for, for example, pharmaceuticals, natural products and polymers. In the case of benzoate, only (1<i>S</i>,2<i>R</i>)-<i>cis</i>-1,2-dihydroxy-2-hydrobenzoate is readily accessible via enzymatic transformation, but not the regioisomeric <i>cis</i>-2,3-dihydroxy-2,3-dihydrobenzoate (2,3-DD) or <i>cis</i>-3,4-dihydroxy-3,4-dihydrobenzoate. While trace amounts of putative <i>cis</i>-2,3-DD have been obtained before by using <i>p</i>-cumate 2,3-dioxygenase (PCDO) or a combination of chlorobenzene dioxygenase and nitrilase, none of these approaches enabled its production and isolation at a greater scale for potential use as a chiral building block in organic synthesis. We here provide a protocol for biotransformation of benzoate yielding (2<i>R</i>,3<i>S</i>)-2,3-dihydroxy-2,3-dihydrobenzoate using the PCDO of <i>Pseudomonas citronellolis</i> strain EB200 with negligible formation of side products. An isolation procedure suitable for production of the 2,3-DD sodium salt monohydrate at high purity (&gt; 95%) at a gram scale, and a comprehensive characterisation of this novel metabolite is given.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442788/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate\",\"authors\":\"Martina Kiel,&nbsp;Israel Barrantes,&nbsp;Dietmar H. Pieper,&nbsp;Karl-Heinrich Engesser\",\"doi\":\"10.1111/1751-7915.70228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial Rieske non-heme iron oxygenases catalyse the transformation of a wide range of aromatic compounds to vicinal <i>cis</i>-dihydrodiols. Such compounds have been successfully applied in chemoenzymatic synthetic routes for, for example, pharmaceuticals, natural products and polymers. In the case of benzoate, only (1<i>S</i>,2<i>R</i>)-<i>cis</i>-1,2-dihydroxy-2-hydrobenzoate is readily accessible via enzymatic transformation, but not the regioisomeric <i>cis</i>-2,3-dihydroxy-2,3-dihydrobenzoate (2,3-DD) or <i>cis</i>-3,4-dihydroxy-3,4-dihydrobenzoate. While trace amounts of putative <i>cis</i>-2,3-DD have been obtained before by using <i>p</i>-cumate 2,3-dioxygenase (PCDO) or a combination of chlorobenzene dioxygenase and nitrilase, none of these approaches enabled its production and isolation at a greater scale for potential use as a chiral building block in organic synthesis. We here provide a protocol for biotransformation of benzoate yielding (2<i>R</i>,3<i>S</i>)-2,3-dihydroxy-2,3-dihydrobenzoate using the PCDO of <i>Pseudomonas citronellolis</i> strain EB200 with negligible formation of side products. An isolation procedure suitable for production of the 2,3-DD sodium salt monohydrate at high purity (&gt; 95%) at a gram scale, and a comprehensive characterisation of this novel metabolite is given.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70228\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌Rieske非血红素铁加氧酶催化一系列芳香族化合物转化为邻近的顺式二氢二醇。这些化合物已成功地应用于化学酶合成路线中,例如,用于药物、天然产物和聚合物。在苯甲酸盐的情况下,只有(1S,2R)-顺式-1,2-二羟基-2-氢苯甲酸酯可以通过酶转化得到,而区域异构体顺式-2,3-二羟基-2,3-二氢苯甲酸酯(2,3- dd)和式-3,4-二羟基-3,4-二氢苯甲酸酯则不能。虽然之前已经通过对己酸酯2,3-双加氧酶(PCDO)或氯苯双加氧酶和腈酶的组合获得了痕量的假定的顺式2,3- dd,但这些方法都没有使其能够大规模生产和分离,作为有机合成中的潜在手性构建块。本文提供了一种利用香茅假单胞菌EB200菌株的PCDO进行苯甲酸酯生物转化的方案,生成(2R,3S)-2,3-二羟基-2,3-二氢苯甲酸酯,而副产物的形成可以忽略不计。本文提出了一种适合生产高纯度(约95%)的2,3- dd钠盐一水合物的分离方法,并对这种新型代谢物进行了全面的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Biotechnological Production, Isolation and Characterisation of (2R,3S)-2,3-Dihydroxy-2,3-Dihydrobenzoate

Bacterial Rieske non-heme iron oxygenases catalyse the transformation of a wide range of aromatic compounds to vicinal cis-dihydrodiols. Such compounds have been successfully applied in chemoenzymatic synthetic routes for, for example, pharmaceuticals, natural products and polymers. In the case of benzoate, only (1S,2R)-cis-1,2-dihydroxy-2-hydrobenzoate is readily accessible via enzymatic transformation, but not the regioisomeric cis-2,3-dihydroxy-2,3-dihydrobenzoate (2,3-DD) or cis-3,4-dihydroxy-3,4-dihydrobenzoate. While trace amounts of putative cis-2,3-DD have been obtained before by using p-cumate 2,3-dioxygenase (PCDO) or a combination of chlorobenzene dioxygenase and nitrilase, none of these approaches enabled its production and isolation at a greater scale for potential use as a chiral building block in organic synthesis. We here provide a protocol for biotransformation of benzoate yielding (2R,3S)-2,3-dihydroxy-2,3-dihydrobenzoate using the PCDO of Pseudomonas citronellolis strain EB200 with negligible formation of side products. An isolation procedure suitable for production of the 2,3-DD sodium salt monohydrate at high purity (> 95%) at a gram scale, and a comprehensive characterisation of this novel metabolite is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信