Xiangtian Wang, Yan Lin, Xiaodong Liu, Emily A Craig, Heather M Stapleton, Michael H Bergin, Junfeng Jim Zhang
{"title":"尿芘羧酸作为一种新的柴烟暴露生物标志物。","authors":"Xiangtian Wang, Yan Lin, Xiaodong Liu, Emily A Craig, Heather M Stapleton, Michael H Bergin, Junfeng Jim Zhang","doi":"10.1021/acs.estlett.5c00587","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying people's exposure to wildfires is essential for assessing related health risks. While hydroxyl metabolites of polycyclic aromatic hydrocarbons (PAHs) are commonly used exposure biomarkers of combustion-originated air pollutants, methylated PAHs are more abundant in woodsmoke than other sources. Thus, urinary PAH carboxylic acids, which are metabolites of methylated PAHs, may serve as more sensitive biomarkers of wildfire exposure. In this exploratory study, we developed an LC-MS/MS method to simultaneously quantify hydroxylated and carboxylic metabolites of PAHs and methyl-PAHs in urine. This method was then applied to 56 urine samples collected from 8 campers before, during, and after a 4-hour exposure to campfire. Campers also wore silicone wristbands to monitor ambient PAHs. We found that 1-pyrenecarboxylic acid (1-PYRCA) levels increased significantly at 4 h (96.9%, 95% CI: 2.60-101%), 6 h (96.8%, 95% CI: 5.85-107%), and 8 h (92.5%, 95% CI: 3.59-99.2%), and returned to baseline levels at 24 h. In contrast, the campfire exposure did not significantly increase other urinary PAH metabolites. Wristband PAHs also significantly increased during the 4-hour exposure. These results suggest the use of urinary 1-PYRCA as a sensitive exposure biomarker for woodsmoke and potentially for assessing exposure to wildfires.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":" ","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Urinary Pyrene Carboxylic Acid as a Novel Exposure Biomarker of Woodsmoke.\",\"authors\":\"Xiangtian Wang, Yan Lin, Xiaodong Liu, Emily A Craig, Heather M Stapleton, Michael H Bergin, Junfeng Jim Zhang\",\"doi\":\"10.1021/acs.estlett.5c00587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantifying people's exposure to wildfires is essential for assessing related health risks. While hydroxyl metabolites of polycyclic aromatic hydrocarbons (PAHs) are commonly used exposure biomarkers of combustion-originated air pollutants, methylated PAHs are more abundant in woodsmoke than other sources. Thus, urinary PAH carboxylic acids, which are metabolites of methylated PAHs, may serve as more sensitive biomarkers of wildfire exposure. In this exploratory study, we developed an LC-MS/MS method to simultaneously quantify hydroxylated and carboxylic metabolites of PAHs and methyl-PAHs in urine. This method was then applied to 56 urine samples collected from 8 campers before, during, and after a 4-hour exposure to campfire. Campers also wore silicone wristbands to monitor ambient PAHs. We found that 1-pyrenecarboxylic acid (1-PYRCA) levels increased significantly at 4 h (96.9%, 95% CI: 2.60-101%), 6 h (96.8%, 95% CI: 5.85-107%), and 8 h (92.5%, 95% CI: 3.59-99.2%), and returned to baseline levels at 24 h. In contrast, the campfire exposure did not significantly increase other urinary PAH metabolites. Wristband PAHs also significantly increased during the 4-hour exposure. These results suggest the use of urinary 1-PYRCA as a sensitive exposure biomarker for woodsmoke and potentially for assessing exposure to wildfires.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.estlett.5c00587\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.estlett.5c00587","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Urinary Pyrene Carboxylic Acid as a Novel Exposure Biomarker of Woodsmoke.
Quantifying people's exposure to wildfires is essential for assessing related health risks. While hydroxyl metabolites of polycyclic aromatic hydrocarbons (PAHs) are commonly used exposure biomarkers of combustion-originated air pollutants, methylated PAHs are more abundant in woodsmoke than other sources. Thus, urinary PAH carboxylic acids, which are metabolites of methylated PAHs, may serve as more sensitive biomarkers of wildfire exposure. In this exploratory study, we developed an LC-MS/MS method to simultaneously quantify hydroxylated and carboxylic metabolites of PAHs and methyl-PAHs in urine. This method was then applied to 56 urine samples collected from 8 campers before, during, and after a 4-hour exposure to campfire. Campers also wore silicone wristbands to monitor ambient PAHs. We found that 1-pyrenecarboxylic acid (1-PYRCA) levels increased significantly at 4 h (96.9%, 95% CI: 2.60-101%), 6 h (96.8%, 95% CI: 5.85-107%), and 8 h (92.5%, 95% CI: 3.59-99.2%), and returned to baseline levels at 24 h. In contrast, the campfire exposure did not significantly increase other urinary PAH metabolites. Wristband PAHs also significantly increased during the 4-hour exposure. These results suggest the use of urinary 1-PYRCA as a sensitive exposure biomarker for woodsmoke and potentially for assessing exposure to wildfires.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.