在T =(293.15, 298.15, 303.15, 313.15和323.15)K和大气压下丙烷-1-醇、吡啶和硝基苯二元和三元混合物的实验和模型研究

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Arbër Musliu, Tahir Arbneshi, Ariel Hernández, Naim Syla, Fisnik Aliaj
{"title":"在T =(293.15, 298.15, 303.15, 313.15和323.15)K和大气压下丙烷-1-醇、吡啶和硝基苯二元和三元混合物的实验和模型研究","authors":"Arbër Musliu,&nbsp;Tahir Arbneshi,&nbsp;Ariel Hernández,&nbsp;Naim Syla,&nbsp;Fisnik Aliaj","doi":"10.1007/s10765-025-03641-2","DOIUrl":null,"url":null,"abstract":"<div><p>Densities and sound speeds of the ternary system {propan-1-ol + pyridine + nitrobenzene} were measured at <i>T</i> = (293.15, 298.15, 303.15, 313.15, and 323.15) K and atmospheric pressure over the entire composition range, together with those of the corresponding binaries. Excess molar volumes and excess isentropic compressibilities, derived from the experimental data, were correlated using the Redlich–Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided information on intermolecular interactions and structural effects. Densities were modeled with the predictive PC-SAFT equation of state, while Schaaff’s Collision Factor Theory and Nomoto’s relation predicted sound speeds. The Jouyban-Acree model correlated density, sound speed, and their derived properties (isentropic compressibility and isobaric thermal expansivity) with a small number of adjustable parameters. Ternary excess properties were further compared with predictions from symmetric (Kohler, Muggianu) and asymmetric (Hillert, Toop) geometric models. Model performance was assessed using statistical indicators, demonstrating the applicability of both theoretical and empirical approaches to describe the thermophysical behavior of these mixtures.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Modeling Study of Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Nitrobenzene at T = (293.15, 298.15, 303.15, 313.15, and 323.15) K and Atmospheric Pressure\",\"authors\":\"Arbër Musliu,&nbsp;Tahir Arbneshi,&nbsp;Ariel Hernández,&nbsp;Naim Syla,&nbsp;Fisnik Aliaj\",\"doi\":\"10.1007/s10765-025-03641-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Densities and sound speeds of the ternary system {propan-1-ol + pyridine + nitrobenzene} were measured at <i>T</i> = (293.15, 298.15, 303.15, 313.15, and 323.15) K and atmospheric pressure over the entire composition range, together with those of the corresponding binaries. Excess molar volumes and excess isentropic compressibilities, derived from the experimental data, were correlated using the Redlich–Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided information on intermolecular interactions and structural effects. Densities were modeled with the predictive PC-SAFT equation of state, while Schaaff’s Collision Factor Theory and Nomoto’s relation predicted sound speeds. The Jouyban-Acree model correlated density, sound speed, and their derived properties (isentropic compressibility and isobaric thermal expansivity) with a small number of adjustable parameters. Ternary excess properties were further compared with predictions from symmetric (Kohler, Muggianu) and asymmetric (Hillert, Toop) geometric models. Model performance was assessed using statistical indicators, demonstrating the applicability of both theoretical and empirical approaches to describe the thermophysical behavior of these mixtures.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-025-03641-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03641-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在T = (293.15, 298.15, 303.15, 313.15, 323.15) K和大气压条件下,测量了三元体系{丙烷-1-醇+吡啶+硝基苯}在整个组成范围内的密度和声速,以及相应的二元体系的密度和声速。从实验数据推导出的过量摩尔体积和过量等熵压缩率分别使用二元和三元体系的Redlich-Kister和Cibulka方程进行了关联。这些性质的组成和温度依赖性为分子间相互作用和结构效应提供了信息。密度用预测PC-SAFT状态方程建模,而Schaaff碰撞因子理论和Nomoto关系预测声速。Jouyban-Acree模型将密度、声速及其衍生性质(等熵压缩率和等压热膨胀率)与少量可调参数相关联。三元过剩性质进一步与对称(Kohler, Muggianu)和非对称(Hillert, Toop)几何模型的预测进行了比较。使用统计指标对模型性能进行了评估,证明了理论和经验方法在描述这些混合物的热物理行为方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental and Modeling Study of Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Nitrobenzene at T = (293.15, 298.15, 303.15, 313.15, and 323.15) K and Atmospheric Pressure

Experimental and Modeling Study of Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Nitrobenzene at T = (293.15, 298.15, 303.15, 313.15, and 323.15) K and Atmospheric Pressure

Experimental and Modeling Study of Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Nitrobenzene at T = (293.15, 298.15, 303.15, 313.15, and 323.15) K and Atmospheric Pressure

Densities and sound speeds of the ternary system {propan-1-ol + pyridine + nitrobenzene} were measured at T = (293.15, 298.15, 303.15, 313.15, and 323.15) K and atmospheric pressure over the entire composition range, together with those of the corresponding binaries. Excess molar volumes and excess isentropic compressibilities, derived from the experimental data, were correlated using the Redlich–Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided information on intermolecular interactions and structural effects. Densities were modeled with the predictive PC-SAFT equation of state, while Schaaff’s Collision Factor Theory and Nomoto’s relation predicted sound speeds. The Jouyban-Acree model correlated density, sound speed, and their derived properties (isentropic compressibility and isobaric thermal expansivity) with a small number of adjustable parameters. Ternary excess properties were further compared with predictions from symmetric (Kohler, Muggianu) and asymmetric (Hillert, Toop) geometric models. Model performance was assessed using statistical indicators, demonstrating the applicability of both theoretical and empirical approaches to describe the thermophysical behavior of these mixtures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信