Mudassar Hussain, Abhishek Bisht, Imad Khan, Muneeba Naseer Chaudhary, Nida Kanwal, Muhammad Umair Khalid, Mst Nushrat Yiasmin, Arif Hussain and Xiaoqiang Zou
{"title":"通过喷雾干燥微胶囊与量身定制的壁材料,增强了富含n-3 PUFAs的结构脂质的稳定性","authors":"Mudassar Hussain, Abhishek Bisht, Imad Khan, Muneeba Naseer Chaudhary, Nida Kanwal, Muhammad Umair Khalid, Mst Nushrat Yiasmin, Arif Hussain and Xiaoqiang Zou","doi":"10.1039/D5FB00185D","DOIUrl":null,"url":null,"abstract":"<p >This study aimed to develop and evaluate the microencapsulation of n-3 PUFAs-rich medium- and long-chain structured lipids (MLSLs) using gum arabic (GA), maltodextrin (MD), and modified starch (MS) in various ratios. Microcapsules were produced <em>via</em> spray drying and assessed for microencapsulation yield, microencapsulation efficiency, physicochemical characteristics, and oxidative stability. The GA:MS:MD formulation achieved the highest microencapsulation yield (87.77 ± 0.47% w/w) and microencapsulation efficiency (90.11 ± 0.56% w/w), with optimal moisture content (1.98 ± 0.21% w/w), water activity (0.17 ± 0.04), and superior wettability (9.27 ± 0.72 min). It also exhibited enhanced solubility (87.54 ± 0.63% w/w) and a low polydispersity index (PDI) (0.28 ± 0.03). FT-IR confirmed successful encapsulation, SEM revealed intact spherical microcapsules, and peroxide values under accelerated storage (55 °C, 28 days) remained low (0.71–2.39 meq O<small><sub>2</sub></small> per kg). These findings highlight GA:MS:MD microcapsules as promising candidates for functional food and pharmaceutical applications.</p>","PeriodicalId":101198,"journal":{"name":"Sustainable Food Technology","volume":" 5","pages":" 1492-1504"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d5fb00185d?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhanced stability of n-3 PUFAs rich structured lipids via spray-dried microencapsulation with tailored wall materials\",\"authors\":\"Mudassar Hussain, Abhishek Bisht, Imad Khan, Muneeba Naseer Chaudhary, Nida Kanwal, Muhammad Umair Khalid, Mst Nushrat Yiasmin, Arif Hussain and Xiaoqiang Zou\",\"doi\":\"10.1039/D5FB00185D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study aimed to develop and evaluate the microencapsulation of n-3 PUFAs-rich medium- and long-chain structured lipids (MLSLs) using gum arabic (GA), maltodextrin (MD), and modified starch (MS) in various ratios. Microcapsules were produced <em>via</em> spray drying and assessed for microencapsulation yield, microencapsulation efficiency, physicochemical characteristics, and oxidative stability. The GA:MS:MD formulation achieved the highest microencapsulation yield (87.77 ± 0.47% w/w) and microencapsulation efficiency (90.11 ± 0.56% w/w), with optimal moisture content (1.98 ± 0.21% w/w), water activity (0.17 ± 0.04), and superior wettability (9.27 ± 0.72 min). It also exhibited enhanced solubility (87.54 ± 0.63% w/w) and a low polydispersity index (PDI) (0.28 ± 0.03). FT-IR confirmed successful encapsulation, SEM revealed intact spherical microcapsules, and peroxide values under accelerated storage (55 °C, 28 days) remained low (0.71–2.39 meq O<small><sub>2</sub></small> per kg). These findings highlight GA:MS:MD microcapsules as promising candidates for functional food and pharmaceutical applications.</p>\",\"PeriodicalId\":101198,\"journal\":{\"name\":\"Sustainable Food Technology\",\"volume\":\" 5\",\"pages\":\" 1492-1504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d5fb00185d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Food Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d5fb00185d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d5fb00185d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced stability of n-3 PUFAs rich structured lipids via spray-dried microencapsulation with tailored wall materials
This study aimed to develop and evaluate the microencapsulation of n-3 PUFAs-rich medium- and long-chain structured lipids (MLSLs) using gum arabic (GA), maltodextrin (MD), and modified starch (MS) in various ratios. Microcapsules were produced via spray drying and assessed for microencapsulation yield, microencapsulation efficiency, physicochemical characteristics, and oxidative stability. The GA:MS:MD formulation achieved the highest microencapsulation yield (87.77 ± 0.47% w/w) and microencapsulation efficiency (90.11 ± 0.56% w/w), with optimal moisture content (1.98 ± 0.21% w/w), water activity (0.17 ± 0.04), and superior wettability (9.27 ± 0.72 min). It also exhibited enhanced solubility (87.54 ± 0.63% w/w) and a low polydispersity index (PDI) (0.28 ± 0.03). FT-IR confirmed successful encapsulation, SEM revealed intact spherical microcapsules, and peroxide values under accelerated storage (55 °C, 28 days) remained low (0.71–2.39 meq O2 per kg). These findings highlight GA:MS:MD microcapsules as promising candidates for functional food and pharmaceutical applications.