{"title":"振磨时间和烧结温度对牛骨纳米羟基磷灰石陶瓷形成和性能的影响","authors":"Anirut Raksujarit and Tanagorn Sangtawesin","doi":"10.1039/D4FB00322E","DOIUrl":null,"url":null,"abstract":"<p >Hydroxyapatite (HA) bioceramics require nanoscale powders to achieve the mechanical strength necessary for load-bearing implants. The impact of vibro-milling on HA derived from bovine bone remains unclear. This study hypothesized that varying vibro-milling duration and sintering temperature could optimize the nano-HA characteristics and ceramic performance. Natural bovine bone was processed into HA powder through boiling, calcination at 800 °C, and initial ball milling. The resulting HA powder was then vibro-milled for 0, 1, 2, 4, and 8 hours to generate nanopowders and sintered between 1150 °C and 1300 °C. A 2 hours vibro-milling treatment produced uniform nano-HA (<100 nm) with good crystallinity. Sintering temperature had a greater influence than milling time, with 1250 °C treatment yielding the highest densification and a maximum bending strength of ∼112 MPa. These findings demonstrate that a 2 hours vibro-milling step combined with 1250 °C sintering produces HA ceramics suitable for load-bearing applications.</p>","PeriodicalId":101198,"journal":{"name":"Sustainable Food Technology","volume":" 5","pages":" 1450-1458"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d4fb00322e?page=search","citationCount":"0","resultStr":"{\"title\":\"Effects of vibro-milling time and sintering temperature on the formation and selected properties of nano-hydroxyapatite ceramics derived from bovine bone\",\"authors\":\"Anirut Raksujarit and Tanagorn Sangtawesin\",\"doi\":\"10.1039/D4FB00322E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydroxyapatite (HA) bioceramics require nanoscale powders to achieve the mechanical strength necessary for load-bearing implants. The impact of vibro-milling on HA derived from bovine bone remains unclear. This study hypothesized that varying vibro-milling duration and sintering temperature could optimize the nano-HA characteristics and ceramic performance. Natural bovine bone was processed into HA powder through boiling, calcination at 800 °C, and initial ball milling. The resulting HA powder was then vibro-milled for 0, 1, 2, 4, and 8 hours to generate nanopowders and sintered between 1150 °C and 1300 °C. A 2 hours vibro-milling treatment produced uniform nano-HA (<100 nm) with good crystallinity. Sintering temperature had a greater influence than milling time, with 1250 °C treatment yielding the highest densification and a maximum bending strength of ∼112 MPa. These findings demonstrate that a 2 hours vibro-milling step combined with 1250 °C sintering produces HA ceramics suitable for load-bearing applications.</p>\",\"PeriodicalId\":101198,\"journal\":{\"name\":\"Sustainable Food Technology\",\"volume\":\" 5\",\"pages\":\" 1450-1458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d4fb00322e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Food Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d4fb00322e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d4fb00322e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of vibro-milling time and sintering temperature on the formation and selected properties of nano-hydroxyapatite ceramics derived from bovine bone
Hydroxyapatite (HA) bioceramics require nanoscale powders to achieve the mechanical strength necessary for load-bearing implants. The impact of vibro-milling on HA derived from bovine bone remains unclear. This study hypothesized that varying vibro-milling duration and sintering temperature could optimize the nano-HA characteristics and ceramic performance. Natural bovine bone was processed into HA powder through boiling, calcination at 800 °C, and initial ball milling. The resulting HA powder was then vibro-milled for 0, 1, 2, 4, and 8 hours to generate nanopowders and sintered between 1150 °C and 1300 °C. A 2 hours vibro-milling treatment produced uniform nano-HA (<100 nm) with good crystallinity. Sintering temperature had a greater influence than milling time, with 1250 °C treatment yielding the highest densification and a maximum bending strength of ∼112 MPa. These findings demonstrate that a 2 hours vibro-milling step combined with 1250 °C sintering produces HA ceramics suitable for load-bearing applications.