Fachun He;Shuang Liu;Longfang Ye;Huali Zhu;Dan Lei;Jun Yan
{"title":"通过独立调谐高阶SSPP模式的多通带和宽阻带滤波器","authors":"Fachun He;Shuang Liu;Longfang Ye;Huali Zhu;Dan Lei;Jun Yan","doi":"10.1109/LMWT.2025.3575715","DOIUrl":null,"url":null,"abstract":"We propose a novel <italic>F</i>-fold spoof surface plasmon polaritons (SSPPs) unit with independently tunable high-order rejection bands. The dispersion characteristics of the proposed <italic>F</i>-fold SSPPs are analyzed. The results show that the cutoff frequencies of Modes 2 and 3 can be precisely adjusted through structural parameters, enabling independent control of the stopband position formed by these two modes, without affecting the fundamental mode (Mode 0) or Mode 1. Therefore, the passband number, bandwidth, and stopband width can be flexibly manipulated for the design of multiple passband filters. For verification, a tri-passband, quad-passband filter, and wide stopband filter are designed, fabricated, and measured. The wide stopband filter achieves a 547% increase in the stopband width compared to the tri-passband filter. Good agreement between the simulations and measurements confirms the feasibility of the proposed structure and design method.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1288-1291"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipassband and Wide-Stopband Filters via Independent Tuning of High-Order SSPP Modes\",\"authors\":\"Fachun He;Shuang Liu;Longfang Ye;Huali Zhu;Dan Lei;Jun Yan\",\"doi\":\"10.1109/LMWT.2025.3575715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel <italic>F</i>-fold spoof surface plasmon polaritons (SSPPs) unit with independently tunable high-order rejection bands. The dispersion characteristics of the proposed <italic>F</i>-fold SSPPs are analyzed. The results show that the cutoff frequencies of Modes 2 and 3 can be precisely adjusted through structural parameters, enabling independent control of the stopband position formed by these two modes, without affecting the fundamental mode (Mode 0) or Mode 1. Therefore, the passband number, bandwidth, and stopband width can be flexibly manipulated for the design of multiple passband filters. For verification, a tri-passband, quad-passband filter, and wide stopband filter are designed, fabricated, and measured. The wide stopband filter achieves a 547% increase in the stopband width compared to the tri-passband filter. Good agreement between the simulations and measurements confirms the feasibility of the proposed structure and design method.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 9\",\"pages\":\"1288-1291\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030211/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11030211/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multipassband and Wide-Stopband Filters via Independent Tuning of High-Order SSPP Modes
We propose a novel F-fold spoof surface plasmon polaritons (SSPPs) unit with independently tunable high-order rejection bands. The dispersion characteristics of the proposed F-fold SSPPs are analyzed. The results show that the cutoff frequencies of Modes 2 and 3 can be precisely adjusted through structural parameters, enabling independent control of the stopband position formed by these two modes, without affecting the fundamental mode (Mode 0) or Mode 1. Therefore, the passband number, bandwidth, and stopband width can be flexibly manipulated for the design of multiple passband filters. For verification, a tri-passband, quad-passband filter, and wide stopband filter are designed, fabricated, and measured. The wide stopband filter achieves a 547% increase in the stopband width compared to the tri-passband filter. Good agreement between the simulations and measurements confirms the feasibility of the proposed structure and design method.