Shuang Qiu;Guangzhe Zhao;Xueping Wang;Feihu Yan;Benwang Lin
{"title":"无监督多类异常检测的流形约束动态解耦学习","authors":"Shuang Qiu;Guangzhe Zhao;Xueping Wang;Feihu Yan;Benwang Lin","doi":"10.1109/TIM.2025.3602566","DOIUrl":null,"url":null,"abstract":"While current unsupervised multiclass anomaly detection methods aim to build unified models for industrial applications, they face a critical dilemma between generalization capability and localization precision. Existing approaches using fixed encoders risk anomalous feature contamination during reconstruction, whereas adaptive encoders sacrifice cross-category generalization through single-class overfitting. To address this fundamental contradiction, we present manifold-constrained dynamic decoupling (MCDD) learning for unsupervised multiclass anomaly detection, which achieves dual constraints on normal feature manifolds through refinement of multiscale features from frozen encoders and robust reconstruction with learnable decoders. Specifically, we first propose the cross-hierarchy attentive bottleneck (CHAB) module, employing channel–spatial dual-domain attention gating to filter shallow texture features and deep structural features, constructing hybrid-scale normal base features. Furthermore, the noise-augmented feature expansion (NAFE) module locates critical encoder regions through attention mechanisms and injects learnable Gaussian noise during decoder upsampling, forcing reconstruction to focus on essential normal attributes. In addition, we construct the hybrid perception reasoning decoder (HPR-Decoder), integrating Visual Mamba’s long-range dependency modeling with graph attention convolution’s local correlation reasoning to achieve fine-grained generation of pixelwise anomaly maps. Experiments on MVTec AD and VisA datasets demonstrate that our method maintains superior multiclass detection performance with a single model while keeping model parameters within a reasonable range.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold-Constrained Dynamic Decoupling Learning for Unsupervised Multiclass Anomaly Detection\",\"authors\":\"Shuang Qiu;Guangzhe Zhao;Xueping Wang;Feihu Yan;Benwang Lin\",\"doi\":\"10.1109/TIM.2025.3602566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While current unsupervised multiclass anomaly detection methods aim to build unified models for industrial applications, they face a critical dilemma between generalization capability and localization precision. Existing approaches using fixed encoders risk anomalous feature contamination during reconstruction, whereas adaptive encoders sacrifice cross-category generalization through single-class overfitting. To address this fundamental contradiction, we present manifold-constrained dynamic decoupling (MCDD) learning for unsupervised multiclass anomaly detection, which achieves dual constraints on normal feature manifolds through refinement of multiscale features from frozen encoders and robust reconstruction with learnable decoders. Specifically, we first propose the cross-hierarchy attentive bottleneck (CHAB) module, employing channel–spatial dual-domain attention gating to filter shallow texture features and deep structural features, constructing hybrid-scale normal base features. Furthermore, the noise-augmented feature expansion (NAFE) module locates critical encoder regions through attention mechanisms and injects learnable Gaussian noise during decoder upsampling, forcing reconstruction to focus on essential normal attributes. In addition, we construct the hybrid perception reasoning decoder (HPR-Decoder), integrating Visual Mamba’s long-range dependency modeling with graph attention convolution’s local correlation reasoning to achieve fine-grained generation of pixelwise anomaly maps. Experiments on MVTec AD and VisA datasets demonstrate that our method maintains superior multiclass detection performance with a single model while keeping model parameters within a reasonable range.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151817/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151817/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Manifold-Constrained Dynamic Decoupling Learning for Unsupervised Multiclass Anomaly Detection
While current unsupervised multiclass anomaly detection methods aim to build unified models for industrial applications, they face a critical dilemma between generalization capability and localization precision. Existing approaches using fixed encoders risk anomalous feature contamination during reconstruction, whereas adaptive encoders sacrifice cross-category generalization through single-class overfitting. To address this fundamental contradiction, we present manifold-constrained dynamic decoupling (MCDD) learning for unsupervised multiclass anomaly detection, which achieves dual constraints on normal feature manifolds through refinement of multiscale features from frozen encoders and robust reconstruction with learnable decoders. Specifically, we first propose the cross-hierarchy attentive bottleneck (CHAB) module, employing channel–spatial dual-domain attention gating to filter shallow texture features and deep structural features, constructing hybrid-scale normal base features. Furthermore, the noise-augmented feature expansion (NAFE) module locates critical encoder regions through attention mechanisms and injects learnable Gaussian noise during decoder upsampling, forcing reconstruction to focus on essential normal attributes. In addition, we construct the hybrid perception reasoning decoder (HPR-Decoder), integrating Visual Mamba’s long-range dependency modeling with graph attention convolution’s local correlation reasoning to achieve fine-grained generation of pixelwise anomaly maps. Experiments on MVTec AD and VisA datasets demonstrate that our method maintains superior multiclass detection performance with a single model while keeping model parameters within a reasonable range.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.