{"title":"自持式GSG进料探针微结构电化学制备充气腔带通滤波器","authors":"Feng Huang;Jing Zhou;Wanping Zhang;Lijie Xu;Bo Li;Lei Zhu","doi":"10.1109/LMWT.2025.3581334","DOIUrl":null,"url":null,"abstract":"In this letter, a bandpass filter (BPF) operating at the <italic>W</i> band is presented by utilizing microstructure electrochemical fabrication (MEFAB) technology. The BPF is made up of two coupled air-filled rectangular cavities which are purposely developed for a second-order Chebyshev response. Inside each cavity, half-wavelength short-circuited stubs are attached to support the vertical ground-signal–ground (GSG) feeding probes. Naturally, by means of adjusting the relative position of two feeding probes, extra transmission zeros (TZs) can be introduced to improve the out-of-band rejection. Finally, a practical air-cavity filter is fabricated for validation. The measured results show good agreement with the simulated ones, exhibiting a low in-band insertion loss of about 0.66 dB and the 3-dB fractional bandwidth (FBW) of 3.6% with the central frequency at 94 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1280-1283"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Air-Filled Cavity Bandpass Filter Processed by Microstructure Electrochemical Fabrication With Self-Supported GSG Feeding Probe\",\"authors\":\"Feng Huang;Jing Zhou;Wanping Zhang;Lijie Xu;Bo Li;Lei Zhu\",\"doi\":\"10.1109/LMWT.2025.3581334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a bandpass filter (BPF) operating at the <italic>W</i> band is presented by utilizing microstructure electrochemical fabrication (MEFAB) technology. The BPF is made up of two coupled air-filled rectangular cavities which are purposely developed for a second-order Chebyshev response. Inside each cavity, half-wavelength short-circuited stubs are attached to support the vertical ground-signal–ground (GSG) feeding probes. Naturally, by means of adjusting the relative position of two feeding probes, extra transmission zeros (TZs) can be introduced to improve the out-of-band rejection. Finally, a practical air-cavity filter is fabricated for validation. The measured results show good agreement with the simulated ones, exhibiting a low in-band insertion loss of about 0.66 dB and the 3-dB fractional bandwidth (FBW) of 3.6% with the central frequency at 94 GHz.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 9\",\"pages\":\"1280-1283\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11048953/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11048953/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Air-Filled Cavity Bandpass Filter Processed by Microstructure Electrochemical Fabrication With Self-Supported GSG Feeding Probe
In this letter, a bandpass filter (BPF) operating at the W band is presented by utilizing microstructure electrochemical fabrication (MEFAB) technology. The BPF is made up of two coupled air-filled rectangular cavities which are purposely developed for a second-order Chebyshev response. Inside each cavity, half-wavelength short-circuited stubs are attached to support the vertical ground-signal–ground (GSG) feeding probes. Naturally, by means of adjusting the relative position of two feeding probes, extra transmission zeros (TZs) can be introduced to improve the out-of-band rejection. Finally, a practical air-cavity filter is fabricated for validation. The measured results show good agreement with the simulated ones, exhibiting a low in-band insertion loss of about 0.66 dB and the 3-dB fractional bandwidth (FBW) of 3.6% with the central frequency at 94 GHz.