{"title":"通过任务驱动的地图压缩与有袋类地面-空中机器人团队合作探索","authors":"Angelos Zacharia;Mihir Dharmadhikari;Kostas Alexis","doi":"10.1109/LRA.2025.3609040","DOIUrl":null,"url":null,"abstract":"Efficient exploration of unknown environments is crucial for autonomous robots, especially in confined and large-scale scenarios with limited communication. To address this challenge, we propose a collaborative exploration framework for a marsupial ground-aerial robot team that leverages the complementary capabilities of both platforms. The framework employs a graph-based path planning algorithm to guide exploration and deploy the aerial robot in areas where its expected gain significantly exceeds that of the ground robot, such as large open spaces or regions inaccessible to the ground platform, thereby maximizing coverage and efficiency. To facilitate large-scale spatial information sharing, we introduce a bandwidth-efficient, task-driven map compression strategy. This method enables each robot to reconstruct resolution-specific volumetric maps while preserving exploration-critical details, even at high compression rates. By selectively compressing and sharing key data, communication overhead is minimized, ensuring effective map integration for collaborative path planning. Simulation and real-world experiments validate the proposed approach, demonstrating its effectiveness in improving exploration efficiency while significantly reducing data transmission.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"11148-11155"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Exploration With a Marsupial Ground-Aerial Robot Team Through Task-Driven Map Compression\",\"authors\":\"Angelos Zacharia;Mihir Dharmadhikari;Kostas Alexis\",\"doi\":\"10.1109/LRA.2025.3609040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient exploration of unknown environments is crucial for autonomous robots, especially in confined and large-scale scenarios with limited communication. To address this challenge, we propose a collaborative exploration framework for a marsupial ground-aerial robot team that leverages the complementary capabilities of both platforms. The framework employs a graph-based path planning algorithm to guide exploration and deploy the aerial robot in areas where its expected gain significantly exceeds that of the ground robot, such as large open spaces or regions inaccessible to the ground platform, thereby maximizing coverage and efficiency. To facilitate large-scale spatial information sharing, we introduce a bandwidth-efficient, task-driven map compression strategy. This method enables each robot to reconstruct resolution-specific volumetric maps while preserving exploration-critical details, even at high compression rates. By selectively compressing and sharing key data, communication overhead is minimized, ensuring effective map integration for collaborative path planning. Simulation and real-world experiments validate the proposed approach, demonstrating its effectiveness in improving exploration efficiency while significantly reducing data transmission.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 11\",\"pages\":\"11148-11155\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11159273/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11159273/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Collaborative Exploration With a Marsupial Ground-Aerial Robot Team Through Task-Driven Map Compression
Efficient exploration of unknown environments is crucial for autonomous robots, especially in confined and large-scale scenarios with limited communication. To address this challenge, we propose a collaborative exploration framework for a marsupial ground-aerial robot team that leverages the complementary capabilities of both platforms. The framework employs a graph-based path planning algorithm to guide exploration and deploy the aerial robot in areas where its expected gain significantly exceeds that of the ground robot, such as large open spaces or regions inaccessible to the ground platform, thereby maximizing coverage and efficiency. To facilitate large-scale spatial information sharing, we introduce a bandwidth-efficient, task-driven map compression strategy. This method enables each robot to reconstruct resolution-specific volumetric maps while preserving exploration-critical details, even at high compression rates. By selectively compressing and sharing key data, communication overhead is minimized, ensuring effective map integration for collaborative path planning. Simulation and real-world experiments validate the proposed approach, demonstrating its effectiveness in improving exploration efficiency while significantly reducing data transmission.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.