Ze Du;Zhi-Yu Duan;Ke Zhan;Zhen-Hua Wu;Ji-Sheng Chen;Hu Li;Ming-Zhou Zhan
{"title":"一种用于太赫兹应用的大芯片宽度tmic封装解决方案","authors":"Ze Du;Zhi-Yu Duan;Ke Zhan;Zhen-Hua Wu;Ji-Sheng Chen;Hu Li;Ming-Zhou Zhan","doi":"10.1109/LMWT.2025.3575467","DOIUrl":null,"url":null,"abstract":"In this letter, a large chip-width terahertz monolithic integrated circuits (TMICs) packaging solution at terahertz (THz) frequencies is presented. The proposed electromagnetic bandgap (EBG) structure in this design can effectively suppress various interference modes generated when the slit width increases. The mode conversion and interconnection between coplanar waveguide with ground (CPWG) and waveguide are realized using integrated on-chip dipole antenna transition model. To verify the proposed solution, a packaging structure accommodating a chip width of 3760 <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m and an on-chip integrated dipole antenna transition model were designed and fabricated. The test results show that in the frequency range of 214–242 GHz, the return loss is better than 9 dB and the insertion loss is better than 4 dB, the de-embedded average loss is less than 1 dB.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1440-1443"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Large Chip-Width TMICs Packaging Solution for THz Applications\",\"authors\":\"Ze Du;Zhi-Yu Duan;Ke Zhan;Zhen-Hua Wu;Ji-Sheng Chen;Hu Li;Ming-Zhou Zhan\",\"doi\":\"10.1109/LMWT.2025.3575467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a large chip-width terahertz monolithic integrated circuits (TMICs) packaging solution at terahertz (THz) frequencies is presented. The proposed electromagnetic bandgap (EBG) structure in this design can effectively suppress various interference modes generated when the slit width increases. The mode conversion and interconnection between coplanar waveguide with ground (CPWG) and waveguide are realized using integrated on-chip dipole antenna transition model. To verify the proposed solution, a packaging structure accommodating a chip width of 3760 <inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m and an on-chip integrated dipole antenna transition model were designed and fabricated. The test results show that in the frequency range of 214–242 GHz, the return loss is better than 9 dB and the insertion loss is better than 4 dB, the de-embedded average loss is less than 1 dB.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 9\",\"pages\":\"1440-1443\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030561/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11030561/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Large Chip-Width TMICs Packaging Solution for THz Applications
In this letter, a large chip-width terahertz monolithic integrated circuits (TMICs) packaging solution at terahertz (THz) frequencies is presented. The proposed electromagnetic bandgap (EBG) structure in this design can effectively suppress various interference modes generated when the slit width increases. The mode conversion and interconnection between coplanar waveguide with ground (CPWG) and waveguide are realized using integrated on-chip dipole antenna transition model. To verify the proposed solution, a packaging structure accommodating a chip width of 3760 $\mu $ m and an on-chip integrated dipole antenna transition model were designed and fabricated. The test results show that in the frequency range of 214–242 GHz, the return loss is better than 9 dB and the insertion loss is better than 4 dB, the de-embedded average loss is less than 1 dB.