基于多层次多尺度卷积神经网络的多相流含水率建模框架

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Weidong Dang;Xiaoyang Li;Ruiqi Wang;Haoyu Li;Zhongke Gao
{"title":"基于多层次多尺度卷积神经网络的多相流含水率建模框架","authors":"Weidong Dang;Xiaoyang Li;Ruiqi Wang;Haoyu Li;Zhongke Gao","doi":"10.1109/JSEN.2025.3597099","DOIUrl":null,"url":null,"abstract":"Water cut measurement is crucial in oil–water multiphase flows, particularly in late-stage oilfield extraction, where high water production presents significant operational challenges. This article proposes a novel multilevel multiscale convolutional neural network (MLMS-CNN) to achieve water cut estimation. The model is designed to extract and analyze complex flow characteristics through three key modules. The multilevel feature learning (MLFL) module fuses spatial and amplitude–phase features from sensor data, while the multiscale feature fusion module captures flow structures across multiple scales. Additionally, the fully convolutional measurement (FCM) module ensures precise water cut prediction. Experimental results demonstrate that the model achieves a mean square error of 0.013%, highlighting its potential for enhancing real-time industrial multiphase flow monitoring and optimization.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"35170-35177"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Multiphase Flow Water Cut Modeling Framework Based on Multilevel Multiscale Convolutional Neural Network\",\"authors\":\"Weidong Dang;Xiaoyang Li;Ruiqi Wang;Haoyu Li;Zhongke Gao\",\"doi\":\"10.1109/JSEN.2025.3597099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water cut measurement is crucial in oil–water multiphase flows, particularly in late-stage oilfield extraction, where high water production presents significant operational challenges. This article proposes a novel multilevel multiscale convolutional neural network (MLMS-CNN) to achieve water cut estimation. The model is designed to extract and analyze complex flow characteristics through three key modules. The multilevel feature learning (MLFL) module fuses spatial and amplitude–phase features from sensor data, while the multiscale feature fusion module captures flow structures across multiple scales. Additionally, the fully convolutional measurement (FCM) module ensures precise water cut prediction. Experimental results demonstrate that the model achieves a mean square error of 0.013%, highlighting its potential for enhancing real-time industrial multiphase flow monitoring and optimization.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"35170-35177\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11125848/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11125848/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

含水率测量在油水多相流中是至关重要的,特别是在油田开采后期,高含水量给作业带来了重大挑战。本文提出了一种新的多层多尺度卷积神经网络(MLMS-CNN)来实现含水率估计。该模型通过三个关键模块对复杂的流动特性进行提取和分析。多层特征学习(MLFL)模块融合来自传感器数据的空间和幅相特征,而多尺度特征融合模块捕获跨多个尺度的流结构。此外,全卷积测量(FCM)模块可确保精确的含水率预测。实验结果表明,该模型的均方误差为0.013%,显示了其在工业多相流实时监测和优化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Multiphase Flow Water Cut Modeling Framework Based on Multilevel Multiscale Convolutional Neural Network
Water cut measurement is crucial in oil–water multiphase flows, particularly in late-stage oilfield extraction, where high water production presents significant operational challenges. This article proposes a novel multilevel multiscale convolutional neural network (MLMS-CNN) to achieve water cut estimation. The model is designed to extract and analyze complex flow characteristics through three key modules. The multilevel feature learning (MLFL) module fuses spatial and amplitude–phase features from sensor data, while the multiscale feature fusion module captures flow structures across multiple scales. Additionally, the fully convolutional measurement (FCM) module ensures precise water cut prediction. Experimental results demonstrate that the model achieves a mean square error of 0.013%, highlighting its potential for enhancing real-time industrial multiphase flow monitoring and optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信