范德华莫尔条纹双层光子晶体腔

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lesley Spencer, , , Nathan Coste*, , , Xueqi Ni, , , Seungmin Park, , , Otto C. Schaeper, , , Young Duck Kim, , , Takashi Taniguchi, , , Kenji Watanabe, , , Milos Toth, , , Anastasiia Zalogina, , , Haoning Tang, , and , Igor Aharonovich*, 
{"title":"范德华莫尔条纹双层光子晶体腔","authors":"Lesley Spencer,&nbsp;, ,&nbsp;Nathan Coste*,&nbsp;, ,&nbsp;Xueqi Ni,&nbsp;, ,&nbsp;Seungmin Park,&nbsp;, ,&nbsp;Otto C. Schaeper,&nbsp;, ,&nbsp;Young Duck Kim,&nbsp;, ,&nbsp;Takashi Taniguchi,&nbsp;, ,&nbsp;Kenji Watanabe,&nbsp;, ,&nbsp;Milos Toth,&nbsp;, ,&nbsp;Anastasiia Zalogina,&nbsp;, ,&nbsp;Haoning Tang,&nbsp;, and ,&nbsp;Igor Aharonovich*,&nbsp;","doi":"10.1021/acs.nanolett.5c03959","DOIUrl":null,"url":null,"abstract":"<p >Enhancing light–matter interactions with photonic structures is critical in classical and quantum nanophotonics. Recently, Moiré twisted bilayer optical materials have been proposed as a promising means toward a tunable platform for nanophotonic devices. However, the realization of Moiré photonic crystal (PhC) cavities has been challenging, due to a lack of advanced nanofabrication techniques and availability of stand-alone transparent membranes. Here, we leverage the properties of the van der Waals material hexagonal boron nitride to realize Moiré bilayer PhC cavities. We design and fabricate a range of devices with controllable twist angles, with flatband modes in the visible spectral range (∼450 nm). Optical characterization confirms the presence of spatially periodic cavity modes originating from the engineered dispersion relation (flatband). Our findings present a major step toward harnessing a two-dimensional van der Waals material for the next generation of on chip, twisted nanophotonic systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14459–14466"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A van der Waals Moiré Bilayer Photonic Crystal Cavity\",\"authors\":\"Lesley Spencer,&nbsp;, ,&nbsp;Nathan Coste*,&nbsp;, ,&nbsp;Xueqi Ni,&nbsp;, ,&nbsp;Seungmin Park,&nbsp;, ,&nbsp;Otto C. Schaeper,&nbsp;, ,&nbsp;Young Duck Kim,&nbsp;, ,&nbsp;Takashi Taniguchi,&nbsp;, ,&nbsp;Kenji Watanabe,&nbsp;, ,&nbsp;Milos Toth,&nbsp;, ,&nbsp;Anastasiia Zalogina,&nbsp;, ,&nbsp;Haoning Tang,&nbsp;, and ,&nbsp;Igor Aharonovich*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Enhancing light–matter interactions with photonic structures is critical in classical and quantum nanophotonics. Recently, Moiré twisted bilayer optical materials have been proposed as a promising means toward a tunable platform for nanophotonic devices. However, the realization of Moiré photonic crystal (PhC) cavities has been challenging, due to a lack of advanced nanofabrication techniques and availability of stand-alone transparent membranes. Here, we leverage the properties of the van der Waals material hexagonal boron nitride to realize Moiré bilayer PhC cavities. We design and fabricate a range of devices with controllable twist angles, with flatband modes in the visible spectral range (∼450 nm). Optical characterization confirms the presence of spatially periodic cavity modes originating from the engineered dispersion relation (flatband). Our findings present a major step toward harnessing a two-dimensional van der Waals material for the next generation of on chip, twisted nanophotonic systems.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 39\",\"pages\":\"14459–14466\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03959\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03959","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增强光-物质与光子结构的相互作用在经典和量子纳米光子学中是至关重要的。近年来,波纹双扭曲层光学材料被认为是一种很有前途的纳米光子器件可调谐平台。然而,由于缺乏先进的纳米制造技术和独立透明膜的可用性,实现光子晶体(PhC)腔一直具有挑战性。在这里,我们利用范德华材料六方氮化硼的性质来实现莫尔奈双层PhC腔。我们设计和制造了一系列具有可控扭角的器件,在可见光谱范围(~ 450 nm)内具有平带模式。光学特性证实了源自工程色散关系(平坦带)的空间周期性腔模式的存在。我们的发现为下一代片上扭曲纳米光子系统利用二维范德华材料迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A van der Waals Moiré Bilayer Photonic Crystal Cavity

A van der Waals Moiré Bilayer Photonic Crystal Cavity

A van der Waals Moiré Bilayer Photonic Crystal Cavity

Enhancing light–matter interactions with photonic structures is critical in classical and quantum nanophotonics. Recently, Moiré twisted bilayer optical materials have been proposed as a promising means toward a tunable platform for nanophotonic devices. However, the realization of Moiré photonic crystal (PhC) cavities has been challenging, due to a lack of advanced nanofabrication techniques and availability of stand-alone transparent membranes. Here, we leverage the properties of the van der Waals material hexagonal boron nitride to realize Moiré bilayer PhC cavities. We design and fabricate a range of devices with controllable twist angles, with flatband modes in the visible spectral range (∼450 nm). Optical characterization confirms the presence of spatially periodic cavity modes originating from the engineered dispersion relation (flatband). Our findings present a major step toward harnessing a two-dimensional van der Waals material for the next generation of on chip, twisted nanophotonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信