羽毛效应启发的超疏水和亲锌超稳定锌金属阳极策略

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenyi Cao, , , Hongyu Lu, , , Zheng Yang, , , Yunsong Li, , , Yuxiao Lin*, , , Jijie Luo, , , Sijie Xiao, , , Jia-Lin Yang, , , Jingxin Zhao*, , , Xiangli Zhong, , , Xiaoping Ouyang*, , , Xing-Long Wu*, , and , Jinbin Wang*, 
{"title":"羽毛效应启发的超疏水和亲锌超稳定锌金属阳极策略","authors":"Chenyi Cao,&nbsp;, ,&nbsp;Hongyu Lu,&nbsp;, ,&nbsp;Zheng Yang,&nbsp;, ,&nbsp;Yunsong Li,&nbsp;, ,&nbsp;Yuxiao Lin*,&nbsp;, ,&nbsp;Jijie Luo,&nbsp;, ,&nbsp;Sijie Xiao,&nbsp;, ,&nbsp;Jia-Lin Yang,&nbsp;, ,&nbsp;Jingxin Zhao*,&nbsp;, ,&nbsp;Xiangli Zhong,&nbsp;, ,&nbsp;Xiaoping Ouyang*,&nbsp;, ,&nbsp;Xing-Long Wu*,&nbsp;, and ,&nbsp;Jinbin Wang*,&nbsp;","doi":"10.1021/acs.nanolett.5c03724","DOIUrl":null,"url":null,"abstract":"<p >Conventional artificial interface coatings can address the dendrite growth in aqueous zinc-ion batteries (AZIBs) by homogenizing the Zn<sup>2+</sup> flux, but the coatings may still fail due to corrosion by free water molecules. Herein, inspired by the hydrophobic architecture of waterfowl feathers, a dual-functional hexadecanethiol (HDT)-Ag@Zn anode with zincophilic and superhydrophobic characteristics was successfully constructed. A feather-like Ag structure is in situ grown on a zinc substrate via a replacement reaction, and an HDT monolayer can be assembled through molecular self-organization. This cross-scale architecture synergistically optimizes zinc deposition kinetics and suppresses interfacial side reactions. The symmetric battery assembled with an HDT-Ag@Zn anode cycles stably for over 2600 h at 1 mA cm<sup>–2</sup> for 1 mAh cm<sup>–2</sup>. The HDT-Ag@Zn//V<sub>2</sub>O<sub>5</sub> full cell delivers a remarkable capacity retention of 92.2% after 3500 cycles at 5 A g<sup>–1</sup>. This work provides new insights into resolving critical bottlenecks in AZIBs through bioinspired interface design, promoting practical application in next-generation energy storage systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14384–14394"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feather-Effect-Inspired Superhydrophobic and Zincophilic Strategy for Ultrastable Zn Metal Anodes\",\"authors\":\"Chenyi Cao,&nbsp;, ,&nbsp;Hongyu Lu,&nbsp;, ,&nbsp;Zheng Yang,&nbsp;, ,&nbsp;Yunsong Li,&nbsp;, ,&nbsp;Yuxiao Lin*,&nbsp;, ,&nbsp;Jijie Luo,&nbsp;, ,&nbsp;Sijie Xiao,&nbsp;, ,&nbsp;Jia-Lin Yang,&nbsp;, ,&nbsp;Jingxin Zhao*,&nbsp;, ,&nbsp;Xiangli Zhong,&nbsp;, ,&nbsp;Xiaoping Ouyang*,&nbsp;, ,&nbsp;Xing-Long Wu*,&nbsp;, and ,&nbsp;Jinbin Wang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conventional artificial interface coatings can address the dendrite growth in aqueous zinc-ion batteries (AZIBs) by homogenizing the Zn<sup>2+</sup> flux, but the coatings may still fail due to corrosion by free water molecules. Herein, inspired by the hydrophobic architecture of waterfowl feathers, a dual-functional hexadecanethiol (HDT)-Ag@Zn anode with zincophilic and superhydrophobic characteristics was successfully constructed. A feather-like Ag structure is in situ grown on a zinc substrate via a replacement reaction, and an HDT monolayer can be assembled through molecular self-organization. This cross-scale architecture synergistically optimizes zinc deposition kinetics and suppresses interfacial side reactions. The symmetric battery assembled with an HDT-Ag@Zn anode cycles stably for over 2600 h at 1 mA cm<sup>–2</sup> for 1 mAh cm<sup>–2</sup>. The HDT-Ag@Zn//V<sub>2</sub>O<sub>5</sub> full cell delivers a remarkable capacity retention of 92.2% after 3500 cycles at 5 A g<sup>–1</sup>. This work provides new insights into resolving critical bottlenecks in AZIBs through bioinspired interface design, promoting practical application in next-generation energy storage systems.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 39\",\"pages\":\"14384–14394\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03724\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03724","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的人工界面涂层可以通过均匀化Zn2+助焊剂来解决水性锌离子电池中枝晶的生长问题,但由于游离水分子的腐蚀,涂层仍然可能失效。本文受水禽羽毛疏水结构的启发,成功构建了具有亲锌和超疏水特性的双功能十六烷硫醇(HDT)-Ag@Zn阳极。通过置换反应在锌衬底上原位生长出羽毛状Ag结构,并通过分子自组织组装出HDT单层。这种跨尺度结构协同优化锌沉积动力学和抑制界面副反应。与HDT-Ag@Zn阳极组装的对称电池在1ma cm-2和1mah cm-2下稳定循环超过2600小时。HDT-Ag@Zn//V2O5全电池在5a g-1下循环3500次后,容量保持率达到92.2%。这项工作为通过仿生界面设计解决azib的关键瓶颈提供了新的见解,促进了下一代储能系统的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feather-Effect-Inspired Superhydrophobic and Zincophilic Strategy for Ultrastable Zn Metal Anodes

Feather-Effect-Inspired Superhydrophobic and Zincophilic Strategy for Ultrastable Zn Metal Anodes

Feather-Effect-Inspired Superhydrophobic and Zincophilic Strategy for Ultrastable Zn Metal Anodes

Conventional artificial interface coatings can address the dendrite growth in aqueous zinc-ion batteries (AZIBs) by homogenizing the Zn2+ flux, but the coatings may still fail due to corrosion by free water molecules. Herein, inspired by the hydrophobic architecture of waterfowl feathers, a dual-functional hexadecanethiol (HDT)-Ag@Zn anode with zincophilic and superhydrophobic characteristics was successfully constructed. A feather-like Ag structure is in situ grown on a zinc substrate via a replacement reaction, and an HDT monolayer can be assembled through molecular self-organization. This cross-scale architecture synergistically optimizes zinc deposition kinetics and suppresses interfacial side reactions. The symmetric battery assembled with an HDT-Ag@Zn anode cycles stably for over 2600 h at 1 mA cm–2 for 1 mAh cm–2. The HDT-Ag@Zn//V2O5 full cell delivers a remarkable capacity retention of 92.2% after 3500 cycles at 5 A g–1. This work provides new insights into resolving critical bottlenecks in AZIBs through bioinspired interface design, promoting practical application in next-generation energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信