氮掺杂碳纳米纤维复合电极增强钛-铈液流电池TiO2+/Ti3+氧化还原动力学

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Shangwan Fu , Ruochen Liu , Chaohong Guan , Yangyang Xie , Yating Wu , Yaobin Lai , Jian Li , Xuxia Zhang , Xudong Liu , Hui Zhang , Tao Qi
{"title":"氮掺杂碳纳米纤维复合电极增强钛-铈液流电池TiO2+/Ti3+氧化还原动力学","authors":"Shangwan Fu ,&nbsp;Ruochen Liu ,&nbsp;Chaohong Guan ,&nbsp;Yangyang Xie ,&nbsp;Yating Wu ,&nbsp;Yaobin Lai ,&nbsp;Jian Li ,&nbsp;Xuxia Zhang ,&nbsp;Xudong Liu ,&nbsp;Hui Zhang ,&nbsp;Tao Qi","doi":"10.1016/j.electacta.2025.147421","DOIUrl":null,"url":null,"abstract":"<div><div>Titanium-cerium flow batteries have garnered significant attention in the energy storage field due to the high potential of the Ce<sup>4+</sup>/Ce<sup>3+</sup> redox pair, the higher potential of the TiO<sup>2+</sup>/Ti<sup>3+</sup> redox pair compared to the hydrogen evolution reaction potential, and the abundant reserves of titanium and cerium. However, traditional carbon felt (CF) electrodes have limited active sites and poor hydrophilicity, which restrain the redox kinetics of the TiO<sup>2+</sup>/Ti<sup>3+</sup> redox pair. To address this, we built a 3D nitrogen-doped carbon nanofiber composite electrode (N-CNF/CF) based on carbon felt. The nitrogen-doped functional group of N-CNF/CF electrode with high specific surface area significantly improves contact between electrolyte and electrode and electron transfer, thus enhances the TiO<sup>2+</sup>/Ti<sup>3+</sup> reaction kinetics and exhibits excellent electrochemical stability. Also, DFT calculations uncover that N-doped modulates the electron transfer and enhances the titanium adsorption. After 200 cycles, the average voltage efficiency and energy efficiency remain at 85.9 % and 84.06 %, respectively, representing a significant improvement over the CF electrode; the average discharge capacity also increases by 14 %. Additionally, under conditions of 0.75 M active material, the capacity and efficiency decay over 30 days is negligible. This study demonstrates that the N-CNF/CF composite electrode holds great promise for practical applications in titanium-cerium flow batteries.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"542 ","pages":"Article 147421"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing TiO2+/Ti3+ redox kinetics by nitrogen-doped carbon nanofiber composite electrodes for titanium-cerium flow batteries\",\"authors\":\"Shangwan Fu ,&nbsp;Ruochen Liu ,&nbsp;Chaohong Guan ,&nbsp;Yangyang Xie ,&nbsp;Yating Wu ,&nbsp;Yaobin Lai ,&nbsp;Jian Li ,&nbsp;Xuxia Zhang ,&nbsp;Xudong Liu ,&nbsp;Hui Zhang ,&nbsp;Tao Qi\",\"doi\":\"10.1016/j.electacta.2025.147421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Titanium-cerium flow batteries have garnered significant attention in the energy storage field due to the high potential of the Ce<sup>4+</sup>/Ce<sup>3+</sup> redox pair, the higher potential of the TiO<sup>2+</sup>/Ti<sup>3+</sup> redox pair compared to the hydrogen evolution reaction potential, and the abundant reserves of titanium and cerium. However, traditional carbon felt (CF) electrodes have limited active sites and poor hydrophilicity, which restrain the redox kinetics of the TiO<sup>2+</sup>/Ti<sup>3+</sup> redox pair. To address this, we built a 3D nitrogen-doped carbon nanofiber composite electrode (N-CNF/CF) based on carbon felt. The nitrogen-doped functional group of N-CNF/CF electrode with high specific surface area significantly improves contact between electrolyte and electrode and electron transfer, thus enhances the TiO<sup>2+</sup>/Ti<sup>3+</sup> reaction kinetics and exhibits excellent electrochemical stability. Also, DFT calculations uncover that N-doped modulates the electron transfer and enhances the titanium adsorption. After 200 cycles, the average voltage efficiency and energy efficiency remain at 85.9 % and 84.06 %, respectively, representing a significant improvement over the CF electrode; the average discharge capacity also increases by 14 %. Additionally, under conditions of 0.75 M active material, the capacity and efficiency decay over 30 days is negligible. This study demonstrates that the N-CNF/CF composite electrode holds great promise for practical applications in titanium-cerium flow batteries.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"542 \",\"pages\":\"Article 147421\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625017785\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625017785","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

钛-铈液流电池由于Ce4+/Ce3+氧化还原对电位高,TiO2+/Ti3+氧化还原对电位高于析氢反应电位,且钛和铈储量丰富,在储能领域备受关注。然而,传统碳毡(CF)电极的活性位点有限,亲水性差,限制了TiO2+/Ti3+氧化还原对的氧化还原动力学。为了解决这个问题,我们构建了一种基于碳毡的三维氮掺杂碳纳米纤维复合电极(N-CNF/CF)。高比表面积的N-CNF/CF电极的氮掺杂官能团显著改善了电解质与电极的接触和电子传递,从而提高了TiO2+/Ti3+的反应动力学,表现出优异的电化学稳定性。此外,DFT计算表明,n掺杂调节了电子转移,增强了钛的吸附。循环200次后,平均电压效率和能量效率分别保持在85.9%和84.06%,较CF电极有显著提高;平均放电容量也增加了14%。此外,在0.75 M活性物质条件下,30天的容量和效率衰减可以忽略不计。该研究表明,N-CNF/CF复合电极在钛-铈液流电池中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing TiO2+/Ti3+ redox kinetics by nitrogen-doped carbon nanofiber composite electrodes for titanium-cerium flow batteries
Titanium-cerium flow batteries have garnered significant attention in the energy storage field due to the high potential of the Ce4+/Ce3+ redox pair, the higher potential of the TiO2+/Ti3+ redox pair compared to the hydrogen evolution reaction potential, and the abundant reserves of titanium and cerium. However, traditional carbon felt (CF) electrodes have limited active sites and poor hydrophilicity, which restrain the redox kinetics of the TiO2+/Ti3+ redox pair. To address this, we built a 3D nitrogen-doped carbon nanofiber composite electrode (N-CNF/CF) based on carbon felt. The nitrogen-doped functional group of N-CNF/CF electrode with high specific surface area significantly improves contact between electrolyte and electrode and electron transfer, thus enhances the TiO2+/Ti3+ reaction kinetics and exhibits excellent electrochemical stability. Also, DFT calculations uncover that N-doped modulates the electron transfer and enhances the titanium adsorption. After 200 cycles, the average voltage efficiency and energy efficiency remain at 85.9 % and 84.06 %, respectively, representing a significant improvement over the CF electrode; the average discharge capacity also increases by 14 %. Additionally, under conditions of 0.75 M active material, the capacity and efficiency decay over 30 days is negligible. This study demonstrates that the N-CNF/CF composite electrode holds great promise for practical applications in titanium-cerium flow batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信