通过分子定向交联组装设计的超坚固纤维素人造丝。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhihan Tong, , , Shi Liu, , , Hongying Tang, , , Jianing Liu, , , Wenjing Bi, , , Yuan Liu, , , Suqing Zeng, , , Qinqin Xia*, , , Dawei Zhao*, , and , Haipeng Yu*, 
{"title":"通过分子定向交联组装设计的超坚固纤维素人造丝。","authors":"Zhihan Tong,&nbsp;, ,&nbsp;Shi Liu,&nbsp;, ,&nbsp;Hongying Tang,&nbsp;, ,&nbsp;Jianing Liu,&nbsp;, ,&nbsp;Wenjing Bi,&nbsp;, ,&nbsp;Yuan Liu,&nbsp;, ,&nbsp;Suqing Zeng,&nbsp;, ,&nbsp;Qinqin Xia*,&nbsp;, ,&nbsp;Dawei Zhao*,&nbsp;, and ,&nbsp;Haipeng Yu*,&nbsp;","doi":"10.1021/acs.nanolett.5c04065","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance regenerated cellulose fibers as sustainable alternatives to nonrenewable and nonbiodegradable synthetic fibers (e.g., polyamide and polyester) remains a critical challenge, particularly in addressing the environmental concerns of conventional viscose rayon and the fibrillation issues of Lyocell fibers. This study introduces a molecular orientation-cross-linking assembly technology integrated with dry-jet wet spinning, employing a deep eutectic solvent system (ZnCl<sub>2</sub>/formic acid/water) for efficient cellulose dissolution. Through synergistic gravity-assisted traction orientation, Ca<sup>2+</sup> complexation, and ethanol–water coagulation, we achieve highly aligned cellulose chains with exceptional structural ordering (60.4% crystallinity, &gt;0.8 orientation factor). The resulting cellulose filaments demonstrate record mechanical properties with a tensile strength of 1.02 GPa and a toughness of 44.08 MJ m<sup>–3</sup>, surpassing commercial polyamide, polyester, Modal, and Lyocell fibers. This approach not only enables precise molecular-scale control of fiber performance but also provides a scalable and sustainable manufacturing solution.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14489–14496"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Robust Cellulose Rayon Filaments Engineered via Molecular Orientation-Cross-linking Assembly\",\"authors\":\"Zhihan Tong,&nbsp;, ,&nbsp;Shi Liu,&nbsp;, ,&nbsp;Hongying Tang,&nbsp;, ,&nbsp;Jianing Liu,&nbsp;, ,&nbsp;Wenjing Bi,&nbsp;, ,&nbsp;Yuan Liu,&nbsp;, ,&nbsp;Suqing Zeng,&nbsp;, ,&nbsp;Qinqin Xia*,&nbsp;, ,&nbsp;Dawei Zhao*,&nbsp;, and ,&nbsp;Haipeng Yu*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c04065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing high-performance regenerated cellulose fibers as sustainable alternatives to nonrenewable and nonbiodegradable synthetic fibers (e.g., polyamide and polyester) remains a critical challenge, particularly in addressing the environmental concerns of conventional viscose rayon and the fibrillation issues of Lyocell fibers. This study introduces a molecular orientation-cross-linking assembly technology integrated with dry-jet wet spinning, employing a deep eutectic solvent system (ZnCl<sub>2</sub>/formic acid/water) for efficient cellulose dissolution. Through synergistic gravity-assisted traction orientation, Ca<sup>2+</sup> complexation, and ethanol–water coagulation, we achieve highly aligned cellulose chains with exceptional structural ordering (60.4% crystallinity, &gt;0.8 orientation factor). The resulting cellulose filaments demonstrate record mechanical properties with a tensile strength of 1.02 GPa and a toughness of 44.08 MJ m<sup>–3</sup>, surpassing commercial polyamide, polyester, Modal, and Lyocell fibers. This approach not only enables precise molecular-scale control of fiber performance but also provides a scalable and sustainable manufacturing solution.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 39\",\"pages\":\"14489–14496\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04065\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04065","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能再生纤维素纤维作为不可再生和不可生物降解合成纤维(如聚酰胺和聚酯)的可持续替代品仍然是一个重大挑战,特别是在解决传统粘胶人造丝的环境问题和Lyocell纤维的纤颤问题方面。本研究介绍了一种结合干喷湿纺丝的分子定向交联组装技术,采用深共晶溶剂体系(ZnCl2/甲酸/水)高效溶解纤维素。通过协同重力辅助牵引取向、Ca2+络合和乙醇-水混凝,我们获得了具有特殊结构有序的高度排列的纤维素链(结晶度60.4%,取向因子>.8)。由此产生的纤维素长丝具有创纪录的机械性能,抗拉强度为1.02 GPa,韧性为44.08 MJ m-3,超过了商用聚酰胺、聚酯、莫代尔和莱赛尔纤维。这种方法不仅可以实现对光纤性能的精确分子级控制,而且还提供了可扩展和可持续的制造解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Super-Robust Cellulose Rayon Filaments Engineered via Molecular Orientation-Cross-linking Assembly

Super-Robust Cellulose Rayon Filaments Engineered via Molecular Orientation-Cross-linking Assembly

Developing high-performance regenerated cellulose fibers as sustainable alternatives to nonrenewable and nonbiodegradable synthetic fibers (e.g., polyamide and polyester) remains a critical challenge, particularly in addressing the environmental concerns of conventional viscose rayon and the fibrillation issues of Lyocell fibers. This study introduces a molecular orientation-cross-linking assembly technology integrated with dry-jet wet spinning, employing a deep eutectic solvent system (ZnCl2/formic acid/water) for efficient cellulose dissolution. Through synergistic gravity-assisted traction orientation, Ca2+ complexation, and ethanol–water coagulation, we achieve highly aligned cellulose chains with exceptional structural ordering (60.4% crystallinity, >0.8 orientation factor). The resulting cellulose filaments demonstrate record mechanical properties with a tensile strength of 1.02 GPa and a toughness of 44.08 MJ m–3, surpassing commercial polyamide, polyester, Modal, and Lyocell fibers. This approach not only enables precise molecular-scale control of fiber performance but also provides a scalable and sustainable manufacturing solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信