Konrad Giżyński, Karol Makuch, Jan Paczesny, Paweł Żuk, Anna Maciołek, Robert Hołyst
{"title":"定常和非定常泊泽维尔流的内能与状态参数的关系","authors":"Konrad Giżyński, Karol Makuch, Jan Paczesny, Paweł Żuk, Anna Maciołek, Robert Hołyst","doi":"10.1515/jnet-2025-0003","DOIUrl":null,"url":null,"abstract":"We studied planar compressible Poiseuille flows of an ideal gas, both in steady and unsteady states, to identify the minimal number of state parameters required to describe changes in internal energy. In previous work (Phys. Rev. E 104, 055107 (2021)), five parameters were needed for steady flows. Here, using global non-equilibrium thermodynamics, we reduce this number to three: non-equilibrium entropy <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, volume <jats:italic>V</jats:italic>, and number of particles <jats:italic>N</jats:italic>. The internal energy <jats:italic>U</jats:italic>(<jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, <jats:italic>V</jats:italic>, <jats:italic>N</jats:italic>) of such systems in stationary and non-stationary states is the function of non-equilibrium entropy <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, volume <jats:italic>V</jats:italic> and number of particles <jats:italic>N</jats:italic> in the system irrespective of any processes, number of boundary conditions or imposed constraints. We tested this by placing a cylinder inside the channel, finding that <jats:italic>U</jats:italic> depends on the cylinder’s location <jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub> only via the state parameters <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>(<jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>) and <jats:italic>N</jats:italic>(<jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>) for <jats:italic>V</jats:italic> = const. Moreover, in cases where the flow becomes unstable and parameters such as velocity and pressure oscillate, <jats:italic>U</jats:italic> depends on time <jats:italic>t</jats:italic> only through <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>(<jats:italic>t</jats:italic>) and <jats:italic>N</jats:italic>(<jats:italic>t</jats:italic>) for <jats:italic>V</jats:italic> = const. These results demonstrate that this formulation of internal energy remains robust and consistent, even in unsteady flows with varying boundary conditions.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"29 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The internal energy as a function of state parameters in steady and unsteady Poiseuille flows\",\"authors\":\"Konrad Giżyński, Karol Makuch, Jan Paczesny, Paweł Żuk, Anna Maciołek, Robert Hołyst\",\"doi\":\"10.1515/jnet-2025-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied planar compressible Poiseuille flows of an ideal gas, both in steady and unsteady states, to identify the minimal number of state parameters required to describe changes in internal energy. In previous work (Phys. Rev. E 104, 055107 (2021)), five parameters were needed for steady flows. Here, using global non-equilibrium thermodynamics, we reduce this number to three: non-equilibrium entropy <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, volume <jats:italic>V</jats:italic>, and number of particles <jats:italic>N</jats:italic>. The internal energy <jats:italic>U</jats:italic>(<jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, <jats:italic>V</jats:italic>, <jats:italic>N</jats:italic>) of such systems in stationary and non-stationary states is the function of non-equilibrium entropy <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>, volume <jats:italic>V</jats:italic> and number of particles <jats:italic>N</jats:italic> in the system irrespective of any processes, number of boundary conditions or imposed constraints. We tested this by placing a cylinder inside the channel, finding that <jats:italic>U</jats:italic> depends on the cylinder’s location <jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub> only via the state parameters <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>(<jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>) and <jats:italic>N</jats:italic>(<jats:italic>y</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>) for <jats:italic>V</jats:italic> = const. Moreover, in cases where the flow becomes unstable and parameters such as velocity and pressure oscillate, <jats:italic>U</jats:italic> depends on time <jats:italic>t</jats:italic> only through <jats:italic>S</jats:italic> <jats:sup>*</jats:sup>(<jats:italic>t</jats:italic>) and <jats:italic>N</jats:italic>(<jats:italic>t</jats:italic>) for <jats:italic>V</jats:italic> = const. These results demonstrate that this formulation of internal energy remains robust and consistent, even in unsteady flows with varying boundary conditions.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2025-0003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2025-0003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
The internal energy as a function of state parameters in steady and unsteady Poiseuille flows
We studied planar compressible Poiseuille flows of an ideal gas, both in steady and unsteady states, to identify the minimal number of state parameters required to describe changes in internal energy. In previous work (Phys. Rev. E 104, 055107 (2021)), five parameters were needed for steady flows. Here, using global non-equilibrium thermodynamics, we reduce this number to three: non-equilibrium entropy S*, volume V, and number of particles N. The internal energy U(S*, V, N) of such systems in stationary and non-stationary states is the function of non-equilibrium entropy S*, volume V and number of particles N in the system irrespective of any processes, number of boundary conditions or imposed constraints. We tested this by placing a cylinder inside the channel, finding that U depends on the cylinder’s location yc only via the state parameters S*(yc) and N(yc) for V = const. Moreover, in cases where the flow becomes unstable and parameters such as velocity and pressure oscillate, U depends on time t only through S*(t) and N(t) for V = const. These results demonstrate that this formulation of internal energy remains robust and consistent, even in unsteady flows with varying boundary conditions.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.