{"title":"锰二甲基氢化配合物:与二氧化碳、二苯甲酮和二异丙基碳二亚胺的反应性","authors":"Jeffrey S. Price, David J. H. Emslie","doi":"10.1039/d5dt01701g","DOIUrl":null,"url":null,"abstract":"Reactions of bis(hydrocarbyl)germylene manganese(<small>I</small>) hydride complexes [(dmpe)<small><sub>2</sub></small>MnH(<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>GeR<small><sub>2</sub></small>)] (<strong>1a</strong>: R = Ph, <strong>1b</strong>: R = Et) with carbon dioxide yielded the previously reported carbonyl formate complex [(dmpe)<small><sub>2</sub></small>Mn(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(CO)] (<strong>3</strong>) <em>via</em> the unstable κ<small><sup>2</sup></small>-formatogermyl intermediates [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-GeR<small><sub>2</sub></small>(OCHO)}] (<strong>5a</strong>: R = Ph, <strong>5b</strong>: R = Et). By contrast, addition of CO<small><sub>2</sub></small> to [(dmpe)<small><sub>2</sub></small>MnH(<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>Ge<small><sup><em>n</em></sup></small>BuH)] (<strong>2a</strong>), which contains a terminal GeH substitutent, resulted in the sequential formation of (i) the formatogermylene hydride complex [(dmpe)<small><sub>2</sub></small>MnH{<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)}] (<strong>6</strong>), (ii) the isolable metallacyclic κ<small><sup>2</sup></small>-formatogermyl complex [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(OCHO)}] (<strong>7</strong>), and with heating(<small>III</small>) complex <strong>3</strong>. Exposure of <strong>2a</strong> to benzophenone also afforded a new germylene hydride complex, [(dmpe)<small><sub>2</sub></small>MnH{<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>Ge<small><sup><em>n</em></sup></small>Bu(OCHPh<small><sub>2</sub></small>)}] (<strong>8</strong>). Reactions of <strong>1a–b</strong> and <strong>2a</strong> with C(N<small><sup>i</sup></small>Pr)<small><sub>2</sub></small> afforded a family of stable metallacyclic κ<small><sup>2</sup></small>-amidinylgermyl complexes [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-GeRR′(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>9a</strong>: R = R′ = Ph, <strong>9b</strong>: R = R′ = Et, <strong>10</strong>: R = <small><sup><em>n</em></sup></small>Bu and R′ = H). Addition of carbon dioxide to <strong>10</strong> yielded [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>11</strong>), and reaction of CO<small><sub>2</sub></small> with the κ<small><sup>2</sup></small>-amidinylsilyl derivative [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-SiPhH(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] afforded [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-SiPh(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>12</strong>). Complexes <strong>6</strong>, <strong>7</strong>, <strong>8</strong>, <strong>9a</strong>, <strong>11</strong>, and <strong>12</strong> were crystallographically characterized, and DFT calculations were conducted to probe the effect that different substituents on Ge have on Mn–Ge bonding in κ<small><sup>2</sup></small>-formatogermyl, κ<small><sup>2</sup></small>-amidinylgermyl, and germylene complexes.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"89 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese germylene hydride complexes: reactivity with carbon dioxide, benzophenone, and diisopropylcarbodiimide\",\"authors\":\"Jeffrey S. Price, David J. H. Emslie\",\"doi\":\"10.1039/d5dt01701g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactions of bis(hydrocarbyl)germylene manganese(<small>I</small>) hydride complexes [(dmpe)<small><sub>2</sub></small>MnH(<img alt=\\\"[double bond, length as m-dash]\\\" border=\\\"0\\\" src=\\\"https://www.rsc.org/images/entities/char_e001.gif\\\"/>GeR<small><sub>2</sub></small>)] (<strong>1a</strong>: R = Ph, <strong>1b</strong>: R = Et) with carbon dioxide yielded the previously reported carbonyl formate complex [(dmpe)<small><sub>2</sub></small>Mn(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(CO)] (<strong>3</strong>) <em>via</em> the unstable κ<small><sup>2</sup></small>-formatogermyl intermediates [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-GeR<small><sub>2</sub></small>(OCHO)}] (<strong>5a</strong>: R = Ph, <strong>5b</strong>: R = Et). By contrast, addition of CO<small><sub>2</sub></small> to [(dmpe)<small><sub>2</sub></small>MnH(<img alt=\\\"[double bond, length as m-dash]\\\" border=\\\"0\\\" src=\\\"https://www.rsc.org/images/entities/char_e001.gif\\\"/>Ge<small><sup><em>n</em></sup></small>BuH)] (<strong>2a</strong>), which contains a terminal GeH substitutent, resulted in the sequential formation of (i) the formatogermylene hydride complex [(dmpe)<small><sub>2</sub></small>MnH{<img alt=\\\"[double bond, length as m-dash]\\\" border=\\\"0\\\" src=\\\"https://www.rsc.org/images/entities/char_e001.gif\\\"/>Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)}] (<strong>6</strong>), (ii) the isolable metallacyclic κ<small><sup>2</sup></small>-formatogermyl complex [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(OCHO)}] (<strong>7</strong>), and with heating(<small>III</small>) complex <strong>3</strong>. Exposure of <strong>2a</strong> to benzophenone also afforded a new germylene hydride complex, [(dmpe)<small><sub>2</sub></small>MnH{<img alt=\\\"[double bond, length as m-dash]\\\" border=\\\"0\\\" src=\\\"https://www.rsc.org/images/entities/char_e001.gif\\\"/>Ge<small><sup><em>n</em></sup></small>Bu(OCHPh<small><sub>2</sub></small>)}] (<strong>8</strong>). Reactions of <strong>1a–b</strong> and <strong>2a</strong> with C(N<small><sup>i</sup></small>Pr)<small><sub>2</sub></small> afforded a family of stable metallacyclic κ<small><sup>2</sup></small>-amidinylgermyl complexes [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-GeRR′(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>9a</strong>: R = R′ = Ph, <strong>9b</strong>: R = R′ = Et, <strong>10</strong>: R = <small><sup><em>n</em></sup></small>Bu and R′ = H). Addition of carbon dioxide to <strong>10</strong> yielded [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-Ge<small><sup><em>n</em></sup></small>Bu(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>11</strong>), and reaction of CO<small><sub>2</sub></small> with the κ<small><sup>2</sup></small>-amidinylsilyl derivative [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-SiPhH(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] afforded [(dmpe)<small><sub>2</sub></small>Mn{κ<small><sup>2</sup></small>-SiPh(κ<small><sup>1</sup></small>-O<small><sub>2</sub></small>CH)(N<small><sup>i</sup></small>PrCHN<small><sup>i</sup></small>Pr)}] (<strong>12</strong>). Complexes <strong>6</strong>, <strong>7</strong>, <strong>8</strong>, <strong>9a</strong>, <strong>11</strong>, and <strong>12</strong> were crystallographically characterized, and DFT calculations were conducted to probe the effect that different substituents on Ge have on Mn–Ge bonding in κ<small><sup>2</sup></small>-formatogermyl, κ<small><sup>2</sup></small>-amidinylgermyl, and germylene complexes.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dt01701g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt01701g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
双(hydrocaryl)germylene锰(I)氢化物配合物[(dmpe)2MnH(GeR2)] (1a: R = Ph, 1b: R = Et)与二氧化碳反应,通过不稳定的κ2- formatogmyl中间体[(dmpe)2Mn{κ2-GeR2(OCHO)}] (5a: R = Ph, 5b: R = Et)生成甲酸羰基配合物[(dmpe)2Mn(κ1-O2CH)(CO)](3)。与此相反,在含有末端GeH取代基的[(dmpe)2MnH(GenBuH)] (2a)中加入CO2后,依次生成(i)正丁二烯氢化物配合物[(dmpe)2MnH{GenBu(κ1-O2CH)}] (6), (ii)可分离的金属环κ2-正丁二烯配合物[(dmpe)2Mn{κ2-GenBu(κ1-O2CH)(OCHO)}](7)和加热(III)配合物3。暴露于二苯甲酮的2a也产生了新的二甲苯氢化物配合物[(dmpe)2MnH{GenBu(OCHPh2)}](8)。1a-b和2a与C(NiPr)2反应形成了稳定的金属环κ2-氨基基germyl配合物家族[(dmpe)2Mn{κ2-GeRR ' (NiPrCHNiPr)}] (9a: R = R ' = Ph, 9b: R = R ' = Et, 10: R = nBu和R ' = H)。10加入二氧化碳得到[(dmpe)2Mn{κ2-GenBu(κ1-O2CH)(NiPrCHNiPr)}](11),与κ2-氨基基硅基衍生物[(dmpe)2Mn{κ2-SiPhH(NiPrCHNiPr)}]反应得到[(dmpe)2Mn{κ2-SiPh(κ1-O2CH)(NiPrCHNiPr)}](12)。对配合物6、7、8、9a、11和12进行了晶体学表征,并通过DFT计算探讨了不同取代基对κ2- formatgermyl、κ2-amidinylgermyl和germylene配合物中Mn-Ge键的影响。
Manganese germylene hydride complexes: reactivity with carbon dioxide, benzophenone, and diisopropylcarbodiimide
Reactions of bis(hydrocarbyl)germylene manganese(I) hydride complexes [(dmpe)2MnH(GeR2)] (1a: R = Ph, 1b: R = Et) with carbon dioxide yielded the previously reported carbonyl formate complex [(dmpe)2Mn(κ1-O2CH)(CO)] (3) via the unstable κ2-formatogermyl intermediates [(dmpe)2Mn{κ2-GeR2(OCHO)}] (5a: R = Ph, 5b: R = Et). By contrast, addition of CO2 to [(dmpe)2MnH(GenBuH)] (2a), which contains a terminal GeH substitutent, resulted in the sequential formation of (i) the formatogermylene hydride complex [(dmpe)2MnH{GenBu(κ1-O2CH)}] (6), (ii) the isolable metallacyclic κ2-formatogermyl complex [(dmpe)2Mn{κ2-GenBu(κ1-O2CH)(OCHO)}] (7), and with heating(III) complex 3. Exposure of 2a to benzophenone also afforded a new germylene hydride complex, [(dmpe)2MnH{GenBu(OCHPh2)}] (8). Reactions of 1a–b and 2a with C(NiPr)2 afforded a family of stable metallacyclic κ2-amidinylgermyl complexes [(dmpe)2Mn{κ2-GeRR′(NiPrCHNiPr)}] (9a: R = R′ = Ph, 9b: R = R′ = Et, 10: R = nBu and R′ = H). Addition of carbon dioxide to 10 yielded [(dmpe)2Mn{κ2-GenBu(κ1-O2CH)(NiPrCHNiPr)}] (11), and reaction of CO2 with the κ2-amidinylsilyl derivative [(dmpe)2Mn{κ2-SiPhH(NiPrCHNiPr)}] afforded [(dmpe)2Mn{κ2-SiPh(κ1-O2CH)(NiPrCHNiPr)}] (12). Complexes 6, 7, 8, 9a, 11, and 12 were crystallographically characterized, and DFT calculations were conducted to probe the effect that different substituents on Ge have on Mn–Ge bonding in κ2-formatogermyl, κ2-amidinylgermyl, and germylene complexes.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.