坍缩星盘的引力不稳定性和碎裂支持了亚太阳中子星的形成

Yi-Xian Chen and Brian D. Metzger
{"title":"坍缩星盘的引力不稳定性和碎裂支持了亚太阳中子星的形成","authors":"Yi-Xian Chen and Brian D. Metzger","doi":"10.3847/2041-8213/ae045d","DOIUrl":null,"url":null,"abstract":"We perform three-dimensional shearing box hydrodynamical simulations to explore the outcome of gravitational instability in the outer regions of neutrino-cooled disks such as those formed from the collapse of rotating massive stars (“collapsars”). We employ a physical equation of state and optically thin neutrino cooling and assume an electron fraction set by the balance of e± pair-capture reactions. Disks in a marginally stable initial state (Toomre parameter Q ≈ 1) undergo runaway cooling and fragmentation when the dimensionless cooling timescale obeys τcool ≡ tcoolΩ ≲ 10, where Ω is the orbital frequency; these conditions correspond to accretion rates ≳M⊙ s−1 on the upper end of those achieved by collapsar progenitor stars. Fragmentation leads to the formation of neutron-rich clumps (electron fraction Ye ≲ 0.1) spanning a range of masses ∼0.01–1 M⊙ around the local Jeans value. Most clumps exceed the local Chandrasekhar mass and hence will continue to collapse to nuclear densities, forming neutron stars (NSs) with subsolar masses otherwise challenging to create through ordinary stellar core collapse. Even cool disks dominated by α particles (Ye ≃ 0.5) can fragment and collapse into neutron-rich clumps capable of forming subsolar NSs. Although our simulations cannot follow this process directly, if the disk-formed NSs subsequently pair into binaries, the GW chirps from their rapid mergers are potentially detectable by ground-based observatories. The temporal coincidence of such a hierarchical NS merger chain with the collapsar gamma-ray burst and supernova would offer a uniquely spectacular multimessenger “symphony.”","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational Instability and Fragmentation in Collapsar Disks Supports the Formation of Subsolar Neutron Stars\",\"authors\":\"Yi-Xian Chen and Brian D. Metzger\",\"doi\":\"10.3847/2041-8213/ae045d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform three-dimensional shearing box hydrodynamical simulations to explore the outcome of gravitational instability in the outer regions of neutrino-cooled disks such as those formed from the collapse of rotating massive stars (“collapsars”). We employ a physical equation of state and optically thin neutrino cooling and assume an electron fraction set by the balance of e± pair-capture reactions. Disks in a marginally stable initial state (Toomre parameter Q ≈ 1) undergo runaway cooling and fragmentation when the dimensionless cooling timescale obeys τcool ≡ tcoolΩ ≲ 10, where Ω is the orbital frequency; these conditions correspond to accretion rates ≳M⊙ s−1 on the upper end of those achieved by collapsar progenitor stars. Fragmentation leads to the formation of neutron-rich clumps (electron fraction Ye ≲ 0.1) spanning a range of masses ∼0.01–1 M⊙ around the local Jeans value. Most clumps exceed the local Chandrasekhar mass and hence will continue to collapse to nuclear densities, forming neutron stars (NSs) with subsolar masses otherwise challenging to create through ordinary stellar core collapse. Even cool disks dominated by α particles (Ye ≃ 0.5) can fragment and collapse into neutron-rich clumps capable of forming subsolar NSs. Although our simulations cannot follow this process directly, if the disk-formed NSs subsequently pair into binaries, the GW chirps from their rapid mergers are potentially detectable by ground-based observatories. The temporal coincidence of such a hierarchical NS merger chain with the collapsar gamma-ray burst and supernova would offer a uniquely spectacular multimessenger “symphony.”\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ae045d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ae045d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们进行了三维剪切箱流体动力学模拟,以探索中微子冷却盘(如那些由旋转大质量恒星坍缩形成的盘)外部区域引力不稳定性的结果。我们采用物理状态方程和光学薄中微子冷却,并假设电子分数由e±对捕获反应的平衡设定。当无量纲冷却时间尺度服从τcool≡tcoolΩ > 10时,处于边缘稳定初始状态(Toomre参数Q≈1)的盘发生失控冷却和破碎,其中Ω为轨道频率;这些条件对应的吸积速率≥M⊙s−1,是坍缩星祖先恒星所达到的吸积速率的上端。碎裂导致形成富中子团块(电子分数Ye > 0.1),其质量范围在局部Jeans值附近约0.01-1 M⊙。大多数团块超过了当地的钱德拉塞卡质量,因此将继续坍缩到核密度,形成具有次太阳质量的中子星(NSs),否则很难通过普通的恒星核心坍缩来产生。即使是由α粒子(Ye≃0.5)控制的冷盘也能破碎并坍缩成富含中子的团块,从而形成亚太阳核反应堆。虽然我们的模拟不能直接跟踪这一过程,但如果盘状星系形成的NSs随后配对成双星,它们快速合并产生的GW啁啾可能会被地面天文台探测到。这种层次化的NS合并链与坍缩型伽玛射线暴和超新星在时间上的巧合,将提供一种独特壮观的多信使“交响乐”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitational Instability and Fragmentation in Collapsar Disks Supports the Formation of Subsolar Neutron Stars
We perform three-dimensional shearing box hydrodynamical simulations to explore the outcome of gravitational instability in the outer regions of neutrino-cooled disks such as those formed from the collapse of rotating massive stars (“collapsars”). We employ a physical equation of state and optically thin neutrino cooling and assume an electron fraction set by the balance of e± pair-capture reactions. Disks in a marginally stable initial state (Toomre parameter Q ≈ 1) undergo runaway cooling and fragmentation when the dimensionless cooling timescale obeys τcool ≡ tcoolΩ ≲ 10, where Ω is the orbital frequency; these conditions correspond to accretion rates ≳M⊙ s−1 on the upper end of those achieved by collapsar progenitor stars. Fragmentation leads to the formation of neutron-rich clumps (electron fraction Ye ≲ 0.1) spanning a range of masses ∼0.01–1 M⊙ around the local Jeans value. Most clumps exceed the local Chandrasekhar mass and hence will continue to collapse to nuclear densities, forming neutron stars (NSs) with subsolar masses otherwise challenging to create through ordinary stellar core collapse. Even cool disks dominated by α particles (Ye ≃ 0.5) can fragment and collapse into neutron-rich clumps capable of forming subsolar NSs. Although our simulations cannot follow this process directly, if the disk-formed NSs subsequently pair into binaries, the GW chirps from their rapid mergers are potentially detectable by ground-based observatories. The temporal coincidence of such a hierarchical NS merger chain with the collapsar gamma-ray burst and supernova would offer a uniquely spectacular multimessenger “symphony.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信