用于无线机器人传感和操作的微型磁超声机

IF 27.5 1区 计算机科学 Q1 ROBOTICS
Xurui Liu, Hanchuan Tang, Na Li, Linjie He, Ye Tian, Bo Hao, Junnan Xue, Chaoyu Yang, Joseph Jao Yiu Sung, Li Zhang, Jianfeng Zang
{"title":"用于无线机器人传感和操作的微型磁超声机","authors":"Xurui Liu,&nbsp;Hanchuan Tang,&nbsp;Na Li,&nbsp;Linjie He,&nbsp;Ye Tian,&nbsp;Bo Hao,&nbsp;Junnan Xue,&nbsp;Chaoyu Yang,&nbsp;Joseph Jao Yiu Sung,&nbsp;Li Zhang,&nbsp;Jianfeng Zang","doi":"10.1126/scirobotics.adu4851","DOIUrl":null,"url":null,"abstract":"<div >Intelligent miniature systems capable of wireless sensing and manipulation hold considerable promise for advancing biomedical applications. However, the development of these systems has been substantially hindered by sensing-actuation incompatibility at small scales. To overcome this challenge, we propose a robotic sensing approach that integrates embedded ultrasonic soft sensors (EUSSs) with magnetic actuators, resulting in a wireless sensor-integrated miniature machine with seamless integration and minimal interference between fields. The EUSS, with its compact dimensions (1.3 millimeters by 1.3 millimeters by 1.6 millimeters), softness (98 kilopascals), and lightweight design (4.6 milligrams), is compatible with both soft and rigid components in terms of deformability and size. By engineering onboard transducers and using passive ultrasound communication along with external magnetic fields, we could wirelessly detect and regulate environmental parameters such as force, vibration, viscosity, and temperature. Demonstrations in rabbit and porcine models show the potential for robotic feedback control, accurate drug dosing, and in situ physiological monitoring, paving the way for real-world applications of intelligent miniature machines.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 106","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniature magneto-ultrasonic machines for wireless robotic sensing and manipulation\",\"authors\":\"Xurui Liu,&nbsp;Hanchuan Tang,&nbsp;Na Li,&nbsp;Linjie He,&nbsp;Ye Tian,&nbsp;Bo Hao,&nbsp;Junnan Xue,&nbsp;Chaoyu Yang,&nbsp;Joseph Jao Yiu Sung,&nbsp;Li Zhang,&nbsp;Jianfeng Zang\",\"doi\":\"10.1126/scirobotics.adu4851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Intelligent miniature systems capable of wireless sensing and manipulation hold considerable promise for advancing biomedical applications. However, the development of these systems has been substantially hindered by sensing-actuation incompatibility at small scales. To overcome this challenge, we propose a robotic sensing approach that integrates embedded ultrasonic soft sensors (EUSSs) with magnetic actuators, resulting in a wireless sensor-integrated miniature machine with seamless integration and minimal interference between fields. The EUSS, with its compact dimensions (1.3 millimeters by 1.3 millimeters by 1.6 millimeters), softness (98 kilopascals), and lightweight design (4.6 milligrams), is compatible with both soft and rigid components in terms of deformability and size. By engineering onboard transducers and using passive ultrasound communication along with external magnetic fields, we could wirelessly detect and regulate environmental parameters such as force, vibration, viscosity, and temperature. Demonstrations in rabbit and porcine models show the potential for robotic feedback control, accurate drug dosing, and in situ physiological monitoring, paving the way for real-world applications of intelligent miniature machines.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 106\",\"pages\":\"\"},\"PeriodicalIF\":27.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adu4851\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adu4851","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

具有无线传感和操作能力的智能微型系统在推进生物医学应用方面具有相当大的前景。然而,在小尺度上,这些系统的发展受到传感-驱动不相容的严重阻碍。为了克服这一挑战,我们提出了一种机器人传感方法,该方法将嵌入式超声软传感器(EUSSs)与磁致动器集成在一起,从而形成无线传感器集成微型机器,具有无缝集成和最小的场间干扰。EUSS具有紧凑的尺寸(1.3毫米× 1.3毫米× 1.6毫米),柔软度(98千帕斯卡)和轻量化设计(4.6毫克),在可变形性和尺寸方面与软性和刚性部件兼容。通过设计机载换能器,并使用无源超声与外部磁场通信,我们可以无线检测和调节环境参数,如力、振动、粘度和温度。在兔和猪模型上的演示显示了机器人反馈控制、精确给药和原位生理监测的潜力,为智能微型机器的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miniature magneto-ultrasonic machines for wireless robotic sensing and manipulation
Intelligent miniature systems capable of wireless sensing and manipulation hold considerable promise for advancing biomedical applications. However, the development of these systems has been substantially hindered by sensing-actuation incompatibility at small scales. To overcome this challenge, we propose a robotic sensing approach that integrates embedded ultrasonic soft sensors (EUSSs) with magnetic actuators, resulting in a wireless sensor-integrated miniature machine with seamless integration and minimal interference between fields. The EUSS, with its compact dimensions (1.3 millimeters by 1.3 millimeters by 1.6 millimeters), softness (98 kilopascals), and lightweight design (4.6 milligrams), is compatible with both soft and rigid components in terms of deformability and size. By engineering onboard transducers and using passive ultrasound communication along with external magnetic fields, we could wirelessly detect and regulate environmental parameters such as force, vibration, viscosity, and temperature. Demonstrations in rabbit and porcine models show the potential for robotic feedback control, accurate drug dosing, and in situ physiological monitoring, paving the way for real-world applications of intelligent miniature machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信