RK Singh Raman, Amal Sibi, Dandapani Vijayshankar, M.J.N.V. Prasad, G. Keerthiga, Solomon Ansah, Saad Al-Saadi, Jafar Albinmousa
{"title":"生理液中的蛋白质抵抗镁合金的过早断裂:对应力腐蚀开裂和腐蚀的独特、显著和对比的影响","authors":"RK Singh Raman, Amal Sibi, Dandapani Vijayshankar, M.J.N.V. Prasad, G. Keerthiga, Solomon Ansah, Saad Al-Saadi, Jafar Albinmousa","doi":"10.1016/j.jma.2025.08.036","DOIUrl":null,"url":null,"abstract":"Though magnesium (Mg) alloys are highly attractive for their use as biodegradable/temporary implants, they can be critically compromised in such applications due to their susceptibility to corrosion and stress corrosion cracking (SCC) in human body fluid (such as Hanks’ solution). This study investigated the role of additions of bovine serum albumin (BSA) and glucose to Hanks’ solution in SCC of a Mg alloy, ZK60. The study reproducibly demonstrated the novel and unique characteristic of the acutely elliptical shape of the overall fracture surface of alloy subjected to SCC tests, exclusively when BSA was added to the Hanks’ solution, whereas tests in the Hanks’ solution without BSA produced the fracture surface of usual circular shape. Also, the BSA addition to the Hanks’ solution produced contrasting influences on SCC and electrochemical corrosion. The study provides a comprehensive mechanistic explanation for the two phenomena.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"51 1","pages":""},"PeriodicalIF":13.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein in physiological fluid resists premature fracture of a magnesium alloy: Unique, remarkable and contrasting influences on stress corrosion cracking and corrosion\",\"authors\":\"RK Singh Raman, Amal Sibi, Dandapani Vijayshankar, M.J.N.V. Prasad, G. Keerthiga, Solomon Ansah, Saad Al-Saadi, Jafar Albinmousa\",\"doi\":\"10.1016/j.jma.2025.08.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though magnesium (Mg) alloys are highly attractive for their use as biodegradable/temporary implants, they can be critically compromised in such applications due to their susceptibility to corrosion and stress corrosion cracking (SCC) in human body fluid (such as Hanks’ solution). This study investigated the role of additions of bovine serum albumin (BSA) and glucose to Hanks’ solution in SCC of a Mg alloy, ZK60. The study reproducibly demonstrated the novel and unique characteristic of the acutely elliptical shape of the overall fracture surface of alloy subjected to SCC tests, exclusively when BSA was added to the Hanks’ solution, whereas tests in the Hanks’ solution without BSA produced the fracture surface of usual circular shape. Also, the BSA addition to the Hanks’ solution produced contrasting influences on SCC and electrochemical corrosion. The study provides a comprehensive mechanistic explanation for the two phenomena.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.08.036\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.08.036","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Protein in physiological fluid resists premature fracture of a magnesium alloy: Unique, remarkable and contrasting influences on stress corrosion cracking and corrosion
Though magnesium (Mg) alloys are highly attractive for their use as biodegradable/temporary implants, they can be critically compromised in such applications due to their susceptibility to corrosion and stress corrosion cracking (SCC) in human body fluid (such as Hanks’ solution). This study investigated the role of additions of bovine serum albumin (BSA) and glucose to Hanks’ solution in SCC of a Mg alloy, ZK60. The study reproducibly demonstrated the novel and unique characteristic of the acutely elliptical shape of the overall fracture surface of alloy subjected to SCC tests, exclusively when BSA was added to the Hanks’ solution, whereas tests in the Hanks’ solution without BSA produced the fracture surface of usual circular shape. Also, the BSA addition to the Hanks’ solution produced contrasting influences on SCC and electrochemical corrosion. The study provides a comprehensive mechanistic explanation for the two phenomena.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.