Marco Borghesi, Alessandro Bosso, Giuseppe Notarstefano
{"title":"鲁棒稳定策略数据驱动LQR的模型参考自适应强化学习","authors":"Marco Borghesi, Alessandro Bosso, Giuseppe Notarstefano","doi":"10.1109/tac.2025.3611155","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"37 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MR-ARL: Model Reference Adaptive Reinforcement Learning for Robustly Stable On-Policy Data-Driven LQR\",\"authors\":\"Marco Borghesi, Alessandro Bosso, Giuseppe Notarstefano\",\"doi\":\"10.1109/tac.2025.3611155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13201,\"journal\":{\"name\":\"IEEE Transactions on Automatic Control\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automatic Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tac.2025.3611155\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tac.2025.3611155","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
期刊介绍:
In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered:
1) Papers: Presentation of significant research, development, or application of control concepts.
2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions.
In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.