Christopher A Johnson, Piyashi Biswas, Rubi Tapia, Jill See, Lucy Dodakian, Vicky Chan, Po T Wang, Zoran Nenadic, An H Do, David J Reinkensmeyer
{"title":"中风后踝关节本体感觉与步态速度之间的微弱关系:一项机器人评估研究。","authors":"Christopher A Johnson, Piyashi Biswas, Rubi Tapia, Jill See, Lucy Dodakian, Vicky Chan, Po T Wang, Zoran Nenadic, An H Do, David J Reinkensmeyer","doi":"10.1177/15459683251369497","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>After stroke, ankle proprioceptive deficits are common and do not typically correlate with ankle weakness. Some studies report that these deficits correlate with gait function, supporting the importance of somatosensory input for gait control. Others have not found a relationship, possibly due to use of coarse proprioception measures. Robotic assessments of proprioception offer improved consistency and sensitivity.</p><p><strong>Objective: </strong>To establish relationships between ankle proprioception, gait function, and ankle motor in stroke survivors.</p><p><strong>Methods: </strong>We studied 39 individuals in the chronic phase of stroke using 2 robotic tests, Crisscross and Joint Position Reproduction (JPR), to quantify ankle proprioception. We examined associations of these measures with gait speed (10-meter walk test) and gait endurance (6-minute walk test). We also analyzed correlations with lower extremity motor impairment, including robotic measures of ankle strength (MVC) and active range of motion (AROM), and the lower extremity Fugl-Meyer exam (LEFM).</p><p><strong>Results: </strong>Impaired ankle proprioception was present in 87% of participants. Crisscross error weakly correlated with the 10mWT gait speed (ρ = -0.20, <i>P</i> = 0.23) and 6MWT distance (ρ = -0.28, <i>P</i> = .089). JPR error weakly correlated with 10mWT gait speed (ρ = -0.29, <i>P</i> = .092) and significantly correlated with 6MWT distance (ρ = -0.34, <i>P</i> = .04). No significant correlations were observed between ankle proprioceptive error and MVC, AROM, or LEFM (<i>P</i> > 0.2).</p><p><strong>Conclusion: </strong>These results confirm the presence of a weak relationship between ankle proprioception and gait after stroke that is independent of several common measures of motor impairment.</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":" ","pages":"15459683251369497"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443327/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Weak Relationship Between Ankle Proprioception and Gait Speed After Stroke: A Robotic Assessment Study.\",\"authors\":\"Christopher A Johnson, Piyashi Biswas, Rubi Tapia, Jill See, Lucy Dodakian, Vicky Chan, Po T Wang, Zoran Nenadic, An H Do, David J Reinkensmeyer\",\"doi\":\"10.1177/15459683251369497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>After stroke, ankle proprioceptive deficits are common and do not typically correlate with ankle weakness. Some studies report that these deficits correlate with gait function, supporting the importance of somatosensory input for gait control. Others have not found a relationship, possibly due to use of coarse proprioception measures. Robotic assessments of proprioception offer improved consistency and sensitivity.</p><p><strong>Objective: </strong>To establish relationships between ankle proprioception, gait function, and ankle motor in stroke survivors.</p><p><strong>Methods: </strong>We studied 39 individuals in the chronic phase of stroke using 2 robotic tests, Crisscross and Joint Position Reproduction (JPR), to quantify ankle proprioception. We examined associations of these measures with gait speed (10-meter walk test) and gait endurance (6-minute walk test). We also analyzed correlations with lower extremity motor impairment, including robotic measures of ankle strength (MVC) and active range of motion (AROM), and the lower extremity Fugl-Meyer exam (LEFM).</p><p><strong>Results: </strong>Impaired ankle proprioception was present in 87% of participants. Crisscross error weakly correlated with the 10mWT gait speed (ρ = -0.20, <i>P</i> = 0.23) and 6MWT distance (ρ = -0.28, <i>P</i> = .089). JPR error weakly correlated with 10mWT gait speed (ρ = -0.29, <i>P</i> = .092) and significantly correlated with 6MWT distance (ρ = -0.34, <i>P</i> = .04). No significant correlations were observed between ankle proprioceptive error and MVC, AROM, or LEFM (<i>P</i> > 0.2).</p><p><strong>Conclusion: </strong>These results confirm the presence of a weak relationship between ankle proprioception and gait after stroke that is independent of several common measures of motor impairment.</p>\",\"PeriodicalId\":94158,\"journal\":{\"name\":\"Neurorehabilitation and neural repair\",\"volume\":\" \",\"pages\":\"15459683251369497\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurorehabilitation and neural repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15459683251369497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683251369497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景:中风后,踝关节本体感觉缺陷是常见的,通常与踝关节无力无关。一些研究报道这些缺陷与步态功能相关,支持体感输入对步态控制的重要性。其他人没有发现这种关系,可能是由于使用了粗糙的本体感觉措施。机器人本体感觉评估提供了改进的一致性和敏感性。目的:探讨脑卒中幸存者踝关节本体感觉、步态功能和踝关节运动之间的关系。方法:对39例脑卒中慢性期患者进行机器人交叉和关节位置再现(JPR)试验,量化踝关节本体感觉。我们检查了这些测量与步态速度(10米步行测试)和步态耐力(6分钟步行测试)的关联。我们还分析了与下肢运动损伤的相关性,包括踝关节强度(MVC)和主动活动范围(AROM)的机器人测量,以及下肢Fugl-Meyer检查(LEFM)。结果:87%的参与者存在踝关节本体感觉受损。交叉误差与10mWT步态速度(ρ = -0.20, P = 0.23)和6MWT距离(ρ = -0.28, P = 0.089)呈弱相关。JPR误差与10mWT步态速度呈弱相关(ρ = -0.29, P =。092),且与6MWT距离显著相关(ρ = -0.34, P = 0.04)。踝关节本体感觉误差与MVC、AROM或LEFM之间无显著相关性(P < 0.05)。结论:这些结果证实了踝关节本体感觉与中风后步态之间存在微弱的关系,这种关系独立于几种常见的运动损伤测量。
The Weak Relationship Between Ankle Proprioception and Gait Speed After Stroke: A Robotic Assessment Study.
Background: After stroke, ankle proprioceptive deficits are common and do not typically correlate with ankle weakness. Some studies report that these deficits correlate with gait function, supporting the importance of somatosensory input for gait control. Others have not found a relationship, possibly due to use of coarse proprioception measures. Robotic assessments of proprioception offer improved consistency and sensitivity.
Objective: To establish relationships between ankle proprioception, gait function, and ankle motor in stroke survivors.
Methods: We studied 39 individuals in the chronic phase of stroke using 2 robotic tests, Crisscross and Joint Position Reproduction (JPR), to quantify ankle proprioception. We examined associations of these measures with gait speed (10-meter walk test) and gait endurance (6-minute walk test). We also analyzed correlations with lower extremity motor impairment, including robotic measures of ankle strength (MVC) and active range of motion (AROM), and the lower extremity Fugl-Meyer exam (LEFM).
Results: Impaired ankle proprioception was present in 87% of participants. Crisscross error weakly correlated with the 10mWT gait speed (ρ = -0.20, P = 0.23) and 6MWT distance (ρ = -0.28, P = .089). JPR error weakly correlated with 10mWT gait speed (ρ = -0.29, P = .092) and significantly correlated with 6MWT distance (ρ = -0.34, P = .04). No significant correlations were observed between ankle proprioceptive error and MVC, AROM, or LEFM (P > 0.2).
Conclusion: These results confirm the presence of a weak relationship between ankle proprioception and gait after stroke that is independent of several common measures of motor impairment.