缺失数据的正则化截面网络建模:方法的比较。

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Carl F Falk, Joshua Starr
{"title":"缺失数据的正则化截面网络建模:方法的比较。","authors":"Carl F Falk, Joshua Starr","doi":"10.1080/00273171.2025.2551373","DOIUrl":null,"url":null,"abstract":"<p><p>Many applications of network modeling involve cross-sectional data of psychological variables (e.g., symptoms for psychological disorders), and analyses are often conducted using a regularized Gaussian graphical model (GGM) employing a lasso, also known as the graphical lasso or <i>glasso</i>. Appropriate methodology for handling missing data is underdeveloped while using glasso, precluding the use of planned missing data designs to reduce participant fatigue. In this research, we compare three approaches to handling missing data with glasso. The first resembles a two-stage estimation approach-borrowed from the covariance structure modeling literature-whereby a saturated covariance matrix among the items is estimated prior to using glasso. The second and third approaches use glasso and the expectation-maximization (EM) algorithm in a single stage and either use EBIC or cross-validation for tuning parameter selection. We compared these approaches in a simulation study with a variety of sample sizes, proportions of missing data, and network saturation. An example with data from the Patient Reported Outcomes Measurement Information System is also provided. The EM algorithm with cross-validation performed best, but all methods appeared to be viable strategies under larger samples and with less missing data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-19"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized Cross-Sectional Network Modeling with Missing Data: A Comparison of Methods.\",\"authors\":\"Carl F Falk, Joshua Starr\",\"doi\":\"10.1080/00273171.2025.2551373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many applications of network modeling involve cross-sectional data of psychological variables (e.g., symptoms for psychological disorders), and analyses are often conducted using a regularized Gaussian graphical model (GGM) employing a lasso, also known as the graphical lasso or <i>glasso</i>. Appropriate methodology for handling missing data is underdeveloped while using glasso, precluding the use of planned missing data designs to reduce participant fatigue. In this research, we compare three approaches to handling missing data with glasso. The first resembles a two-stage estimation approach-borrowed from the covariance structure modeling literature-whereby a saturated covariance matrix among the items is estimated prior to using glasso. The second and third approaches use glasso and the expectation-maximization (EM) algorithm in a single stage and either use EBIC or cross-validation for tuning parameter selection. We compared these approaches in a simulation study with a variety of sample sizes, proportions of missing data, and network saturation. An example with data from the Patient Reported Outcomes Measurement Information System is also provided. The EM algorithm with cross-validation performed best, but all methods appeared to be viable strategies under larger samples and with less missing data.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2025.2551373\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2551373","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

网络建模的许多应用涉及心理变量的横截面数据(例如,心理障碍的症状),并且通常使用使用套索(也称为图形套索或玻璃)的正则化高斯图形模型(GGM)进行分析。在使用glasso时,处理缺失数据的适当方法尚不发达,这妨碍了使用计划缺失数据设计来减少参与者疲劳。在这项研究中,我们比较了三种方法来处理丢失的数据与玻璃。第一种方法类似于两阶段估计方法——借鉴了协方差结构建模文献——在使用glassso之前估计项目之间的饱和协方差矩阵。第二和第三种方法在单个阶段中使用glasso和期望最大化(EM)算法,并使用EBIC或交叉验证来调整参数选择。我们在模拟研究中将这些方法与各种样本量、缺失数据的比例和网络饱和度进行了比较。还提供了一个来自患者报告结果测量信息系统的数据示例。交叉验证的EM算法表现最好,但在更大的样本和更少的缺失数据下,所有方法似乎都是可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Cross-Sectional Network Modeling with Missing Data: A Comparison of Methods.

Many applications of network modeling involve cross-sectional data of psychological variables (e.g., symptoms for psychological disorders), and analyses are often conducted using a regularized Gaussian graphical model (GGM) employing a lasso, also known as the graphical lasso or glasso. Appropriate methodology for handling missing data is underdeveloped while using glasso, precluding the use of planned missing data designs to reduce participant fatigue. In this research, we compare three approaches to handling missing data with glasso. The first resembles a two-stage estimation approach-borrowed from the covariance structure modeling literature-whereby a saturated covariance matrix among the items is estimated prior to using glasso. The second and third approaches use glasso and the expectation-maximization (EM) algorithm in a single stage and either use EBIC or cross-validation for tuning parameter selection. We compared these approaches in a simulation study with a variety of sample sizes, proportions of missing data, and network saturation. An example with data from the Patient Reported Outcomes Measurement Information System is also provided. The EM algorithm with cross-validation performed best, but all methods appeared to be viable strategies under larger samples and with less missing data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信