Kontextual重构了空间组学数据的分析,揭示了图像间一致的细胞关系。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Farhan Ameen, Nick Robertson, David M Lin, Shila Ghazanfar, Ellis Patrick
{"title":"Kontextual重构了空间组学数据的分析,揭示了图像间一致的细胞关系。","authors":"Farhan Ameen, Nick Robertson, David M Lin, Shila Ghazanfar, Ellis Patrick","doi":"10.1016/j.crmeth.2025.101175","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial proteomic and transcriptomic technologies enable high-throughput phenotyping of cells in situ, enabling quantification of spatial relationships among diverse cell populations. However, the experimental design choice of which regions of a tissue will be imaged can greatly impact the interpretation of spatial quantifications. That is, spatial relationships identified in one region of interest may not be interpreted consistently across other regions. To address this challenge, we introduce Kontextual, a method that considers alternative frames of reference for contextualizing spatial relationships. These contexts may represent landmarks, spatial domains, or groups of functionally similar cells that are consistent across regions. By modeling spatial relationships between cells relative to these contexts, Kontextual produces robust spatial quantifications that are not confounded by the region selected. We demonstrate in spatial proteomics and transcriptomics datasets that modeling spatial relationships this way is biologically meaningful and can improve the prediction of patient prognosis in a classification setting.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101175"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kontextual reframes analysis of spatial omics data and reveals consistent cell relationships across images.\",\"authors\":\"Farhan Ameen, Nick Robertson, David M Lin, Shila Ghazanfar, Ellis Patrick\",\"doi\":\"10.1016/j.crmeth.2025.101175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial proteomic and transcriptomic technologies enable high-throughput phenotyping of cells in situ, enabling quantification of spatial relationships among diverse cell populations. However, the experimental design choice of which regions of a tissue will be imaged can greatly impact the interpretation of spatial quantifications. That is, spatial relationships identified in one region of interest may not be interpreted consistently across other regions. To address this challenge, we introduce Kontextual, a method that considers alternative frames of reference for contextualizing spatial relationships. These contexts may represent landmarks, spatial domains, or groups of functionally similar cells that are consistent across regions. By modeling spatial relationships between cells relative to these contexts, Kontextual produces robust spatial quantifications that are not confounded by the region selected. We demonstrate in spatial proteomics and transcriptomics datasets that modeling spatial relationships this way is biologically meaningful and can improve the prediction of patient prognosis in a classification setting.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101175\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

空间蛋白质组学和转录组学技术使高通量细胞表型原位,使不同细胞群体之间的空间关系的量化。然而,组织的哪个区域将被成像的实验设计选择可以极大地影响空间量化的解释。也就是说,在一个感兴趣的区域确定的空间关系可能不会在其他区域得到一致的解释。为了应对这一挑战,我们引入了一种考虑空间关系语境化的替代参考框架的方法——语境文本。这些上下文可以代表地标、空间域或跨区域一致的功能相似的细胞群。通过模拟相对于这些环境的细胞之间的空间关系,Kontextual产生健壮的空间量化,不会被所选择的区域混淆。我们在空间蛋白质组学和转录组学数据集中证明,以这种方式建模空间关系具有生物学意义,并且可以在分类设置中提高对患者预后的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kontextual reframes analysis of spatial omics data and reveals consistent cell relationships across images.

Spatial proteomic and transcriptomic technologies enable high-throughput phenotyping of cells in situ, enabling quantification of spatial relationships among diverse cell populations. However, the experimental design choice of which regions of a tissue will be imaged can greatly impact the interpretation of spatial quantifications. That is, spatial relationships identified in one region of interest may not be interpreted consistently across other regions. To address this challenge, we introduce Kontextual, a method that considers alternative frames of reference for contextualizing spatial relationships. These contexts may represent landmarks, spatial domains, or groups of functionally similar cells that are consistent across regions. By modeling spatial relationships between cells relative to these contexts, Kontextual produces robust spatial quantifications that are not confounded by the region selected. We demonstrate in spatial proteomics and transcriptomics datasets that modeling spatial relationships this way is biologically meaningful and can improve the prediction of patient prognosis in a classification setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信