一种用于快速预测热力学不稳定酪氨酸磷酸化的结构机器学习方法。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Jaie Woodard, Zhengqing Liu, Atena Malemir Chegini, Jian Tian, Rupa Bhowmick, Subramaniam Pennathur, Alireza Mashaghi, Jeffrey R Brender, Sriram Chandrasekaran
{"title":"一种用于快速预测热力学不稳定酪氨酸磷酸化的结构机器学习方法。","authors":"Jaie Woodard, Zhengqing Liu, Atena Malemir Chegini, Jian Tian, Rupa Bhowmick, Subramaniam Pennathur, Alireza Mashaghi, Jeffrey R Brender, Sriram Chandrasekaran","doi":"10.1016/j.crmeth.2025.101169","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine phosphorylations are a prominent characteristic of numerous diseases, yet it is challenging to identify potentially (dys)functional phosphorylations among thousands of phospho-proteins. Here, we propose a machine learning method to predict the thermodynamic stability change resulting from tyrosine phosphorylation. Our approach, based on the prediction of phosphomimetic stability (ΔΔG) from structural features, strongly correlates with experimental phosphorylation stability and mutational scanning cDNA proteolysis data (R = 0.55-0.67). We apply our approach to predict the potential destabilizing effects of all 384,858 tyrosine residues from the Alphafold2 database, the PhosphoSitePlus database, and on a pan-cancer phosphoproteomics dataset with 11 cancer subtypes. We predict destabilizing phosphorylations in both oncogenes and tumor suppressors, and ΔΔG values and local protein circuit topology features are able to distinguish phospho-proteins that are known to be dysregulated in cancer. Our approach can enable rapid screening of destabilizing phosphorylations and phosphomimetic mutations.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 9","pages":"101169"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structural machine learning approach for rapid prediction of thermodynamically destabilizing tyrosine phosphorylations.\",\"authors\":\"Jaie Woodard, Zhengqing Liu, Atena Malemir Chegini, Jian Tian, Rupa Bhowmick, Subramaniam Pennathur, Alireza Mashaghi, Jeffrey R Brender, Sriram Chandrasekaran\",\"doi\":\"10.1016/j.crmeth.2025.101169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tyrosine phosphorylations are a prominent characteristic of numerous diseases, yet it is challenging to identify potentially (dys)functional phosphorylations among thousands of phospho-proteins. Here, we propose a machine learning method to predict the thermodynamic stability change resulting from tyrosine phosphorylation. Our approach, based on the prediction of phosphomimetic stability (ΔΔG) from structural features, strongly correlates with experimental phosphorylation stability and mutational scanning cDNA proteolysis data (R = 0.55-0.67). We apply our approach to predict the potential destabilizing effects of all 384,858 tyrosine residues from the Alphafold2 database, the PhosphoSitePlus database, and on a pan-cancer phosphoproteomics dataset with 11 cancer subtypes. We predict destabilizing phosphorylations in both oncogenes and tumor suppressors, and ΔΔG values and local protein circuit topology features are able to distinguish phospho-proteins that are known to be dysregulated in cancer. Our approach can enable rapid screening of destabilizing phosphorylations and phosphomimetic mutations.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\"5 9\",\"pages\":\"101169\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

酪氨酸磷酸化是许多疾病的一个突出特征,然而在数千种磷酸化蛋白中识别潜在的(天)功能性磷酸化是具有挑战性的。在这里,我们提出了一种机器学习方法来预测酪氨酸磷酸化导致的热力学稳定性变化。我们的方法基于结构特征预测的拟磷稳定性(ΔΔG),与实验磷酸化稳定性和突变扫描cDNA蛋白水解数据密切相关(R = 0.55-0.67)。我们应用我们的方法预测了来自Alphafold2数据库、PhosphoSitePlus数据库和包含11种癌症亚型的泛癌症磷酸化蛋白质组学数据集的所有384,858个酪氨酸残基的潜在不稳定效应。我们预测癌基因和肿瘤抑制基因的不稳定磷酸化,ΔΔG值和局部蛋白质电路拓扑特征能够区分已知在癌症中失调的磷酸化蛋白。我们的方法可以快速筛选不稳定的磷酸化和拟磷突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A structural machine learning approach for rapid prediction of thermodynamically destabilizing tyrosine phosphorylations.

Tyrosine phosphorylations are a prominent characteristic of numerous diseases, yet it is challenging to identify potentially (dys)functional phosphorylations among thousands of phospho-proteins. Here, we propose a machine learning method to predict the thermodynamic stability change resulting from tyrosine phosphorylation. Our approach, based on the prediction of phosphomimetic stability (ΔΔG) from structural features, strongly correlates with experimental phosphorylation stability and mutational scanning cDNA proteolysis data (R = 0.55-0.67). We apply our approach to predict the potential destabilizing effects of all 384,858 tyrosine residues from the Alphafold2 database, the PhosphoSitePlus database, and on a pan-cancer phosphoproteomics dataset with 11 cancer subtypes. We predict destabilizing phosphorylations in both oncogenes and tumor suppressors, and ΔΔG values and local protein circuit topology features are able to distinguish phospho-proteins that are known to be dysregulated in cancer. Our approach can enable rapid screening of destabilizing phosphorylations and phosphomimetic mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信