Marco Ruscone, Eirini Tsirvouli, Andrea Checcoli, Denes Turei, Emmanuel Barillot, Julio Saez-Rodriguez, Loredana Martignetti, Åsmund Flobak, Laurence Calzone
{"title":"NeKo:一个基于先验知识自动构建网络的工具。","authors":"Marco Ruscone, Eirini Tsirvouli, Andrea Checcoli, Denes Turei, Emmanuel Barillot, Julio Saez-Rodriguez, Loredana Martignetti, Åsmund Flobak, Laurence Calzone","doi":"10.1371/journal.pcbi.1013300","DOIUrl":null,"url":null,"abstract":"<p><p>Biological networks provide a structured framework for analyzing the dynamic interplay and interactions between molecular entities, facilitating deeper insights into cellular functions and biological processes. Network construction often requires extensive manual curation based on scientific literature and public databases, a time-consuming and laborious task. To address this challenge, we introduce NeKo, a Python package to automate the construction of biological networks by integrating and prioritizing molecular interactions from various databases. NeKo allows users to provide their molecules of interest (e.g., genes, proteins or phosphosites), select interaction resources and apply flexible strategies to build networks based on prior knowledge. Users can filter interactions by various criteria, such as direct or indirect links and signed or unsigned interactions, to tailor the network to their needs and downstream analysis. We demonstrate some of NeKo's capabilities in two use cases: first we construct a network based on transcriptomics from medulloblastoma; in the second, we model drug synergies. NeKo streamlines the network-building process, making it more accessible and efficient for researchers.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013300"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456767/pdf/","citationCount":"0","resultStr":"{\"title\":\"NeKo: A tool for automatic network construction from prior knowledge.\",\"authors\":\"Marco Ruscone, Eirini Tsirvouli, Andrea Checcoli, Denes Turei, Emmanuel Barillot, Julio Saez-Rodriguez, Loredana Martignetti, Åsmund Flobak, Laurence Calzone\",\"doi\":\"10.1371/journal.pcbi.1013300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological networks provide a structured framework for analyzing the dynamic interplay and interactions between molecular entities, facilitating deeper insights into cellular functions and biological processes. Network construction often requires extensive manual curation based on scientific literature and public databases, a time-consuming and laborious task. To address this challenge, we introduce NeKo, a Python package to automate the construction of biological networks by integrating and prioritizing molecular interactions from various databases. NeKo allows users to provide their molecules of interest (e.g., genes, proteins or phosphosites), select interaction resources and apply flexible strategies to build networks based on prior knowledge. Users can filter interactions by various criteria, such as direct or indirect links and signed or unsigned interactions, to tailor the network to their needs and downstream analysis. We demonstrate some of NeKo's capabilities in two use cases: first we construct a network based on transcriptomics from medulloblastoma; in the second, we model drug synergies. NeKo streamlines the network-building process, making it more accessible and efficient for researchers.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013300\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013300\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013300","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
NeKo: A tool for automatic network construction from prior knowledge.
Biological networks provide a structured framework for analyzing the dynamic interplay and interactions between molecular entities, facilitating deeper insights into cellular functions and biological processes. Network construction often requires extensive manual curation based on scientific literature and public databases, a time-consuming and laborious task. To address this challenge, we introduce NeKo, a Python package to automate the construction of biological networks by integrating and prioritizing molecular interactions from various databases. NeKo allows users to provide their molecules of interest (e.g., genes, proteins or phosphosites), select interaction resources and apply flexible strategies to build networks based on prior knowledge. Users can filter interactions by various criteria, such as direct or indirect links and signed or unsigned interactions, to tailor the network to their needs and downstream analysis. We demonstrate some of NeKo's capabilities in two use cases: first we construct a network based on transcriptomics from medulloblastoma; in the second, we model drug synergies. NeKo streamlines the network-building process, making it more accessible and efficient for researchers.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.