纳米粒子沉积到通过软组织传递的细胞:三维模拟和拉格朗日相干结构动力学。

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-09-01 Epub Date: 2025-09-17 DOI:10.1098/rsif.2025.0270
Mazyar Dawoodian, Amalendu Sau
{"title":"纳米粒子沉积到通过软组织传递的细胞:三维模拟和拉格朗日相干结构动力学。","authors":"Mazyar Dawoodian, Amalendu Sau","doi":"10.1098/rsif.2025.0270","DOIUrl":null,"url":null,"abstract":"<p><p>We elucidate the role of time-invariant spatial attractors-repellers in segregating nano-suspensions around a tumour cell. A major challenge for targeted therapeutic drug delivery is the inadequate understanding of active nano-bio-separatrices at the delivery site. Using the lattice-Boltzmann-immersed-boundary method, first, we simulate the kinematics of a compound cell in a micro-vessel partly blocked by an invasive tissue and examine the stretching of its plasma membrane (PM) and nuclear envelope (NE) for varied nucleus size, capillary number and blockage hole. Second, we compute the trajectories of the suspended large number of inertial nanoparticles (NPs) in the vessel using a dynamical system approach. Third, we compute the particle Lagrangian coherent structures (pLCS) for the advecting NPs and identify the time-invariant geometric separatrices. The dominant attractive-repulsive pLCS effectually demarcates fluid regions from where NPs move closer/attach to the cell and from where NPs move away. Our study explains that delivering nanomedicine to a cell is feasible only through its stretched PM's high-tension rear side. The created repulsive pLCS barricades NPs from moving closer to a cell's PM's low-tension lateral/front sides. We thus unfold a universal separation behaviour of NPs around a cell. NP delivery rate increased for a larger capillary number and cell nucleus size. It decreased for heavier NPs and a cell stiffer nucleus/NE.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250270"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle deposition to a cell transiting through a soft tissue: three-dimensional simulation and Lagrangian coherent structure dynamics.\",\"authors\":\"Mazyar Dawoodian, Amalendu Sau\",\"doi\":\"10.1098/rsif.2025.0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We elucidate the role of time-invariant spatial attractors-repellers in segregating nano-suspensions around a tumour cell. A major challenge for targeted therapeutic drug delivery is the inadequate understanding of active nano-bio-separatrices at the delivery site. Using the lattice-Boltzmann-immersed-boundary method, first, we simulate the kinematics of a compound cell in a micro-vessel partly blocked by an invasive tissue and examine the stretching of its plasma membrane (PM) and nuclear envelope (NE) for varied nucleus size, capillary number and blockage hole. Second, we compute the trajectories of the suspended large number of inertial nanoparticles (NPs) in the vessel using a dynamical system approach. Third, we compute the particle Lagrangian coherent structures (pLCS) for the advecting NPs and identify the time-invariant geometric separatrices. The dominant attractive-repulsive pLCS effectually demarcates fluid regions from where NPs move closer/attach to the cell and from where NPs move away. Our study explains that delivering nanomedicine to a cell is feasible only through its stretched PM's high-tension rear side. The created repulsive pLCS barricades NPs from moving closer to a cell's PM's low-tension lateral/front sides. We thus unfold a universal separation behaviour of NPs around a cell. NP delivery rate increased for a larger capillary number and cell nucleus size. It decreased for heavier NPs and a cell stiffer nucleus/NE.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 230\",\"pages\":\"20250270\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0270\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0270","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们阐明了定常空间吸引-驱避剂在分离肿瘤细胞周围纳米悬浮液中的作用。靶向治疗药物递送的一个主要挑战是对递送部位活性纳米生物分离材料的了解不足。首先,利用晶格-玻尔兹曼-浸入边界方法,我们模拟了一个复合细胞在部分被侵入性组织阻塞的微血管中的运动学,并检查了其质膜(PM)和核包膜(NE)的拉伸,以改变细胞核大小、毛细血管数量和阻塞孔。其次,我们使用动力系统方法计算了悬浮在容器中的大量惯性纳米粒子(NPs)的轨迹。第三,计算了平流NPs的粒子拉格朗日相干结构(pLCS),并识别了定常几何分离。占主导地位的吸引-排斥plc有效地划定了NPs靠近/附着细胞和NPs远离细胞的流体区域。我们的研究解释说,将纳米药物输送到细胞中只有通过其拉伸的PM的高张力后方才是可行的。所创建的排斥性plc阻止np靠近细胞PM的低压侧/正面。因此,我们揭示了细胞周围NPs的普遍分离行为。随着毛细血管数量和细胞核大小的增加,NP传递率增加。较重的NPs和较硬的细胞核/NE降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoparticle deposition to a cell transiting through a soft tissue: three-dimensional simulation and Lagrangian coherent structure dynamics.

We elucidate the role of time-invariant spatial attractors-repellers in segregating nano-suspensions around a tumour cell. A major challenge for targeted therapeutic drug delivery is the inadequate understanding of active nano-bio-separatrices at the delivery site. Using the lattice-Boltzmann-immersed-boundary method, first, we simulate the kinematics of a compound cell in a micro-vessel partly blocked by an invasive tissue and examine the stretching of its plasma membrane (PM) and nuclear envelope (NE) for varied nucleus size, capillary number and blockage hole. Second, we compute the trajectories of the suspended large number of inertial nanoparticles (NPs) in the vessel using a dynamical system approach. Third, we compute the particle Lagrangian coherent structures (pLCS) for the advecting NPs and identify the time-invariant geometric separatrices. The dominant attractive-repulsive pLCS effectually demarcates fluid regions from where NPs move closer/attach to the cell and from where NPs move away. Our study explains that delivering nanomedicine to a cell is feasible only through its stretched PM's high-tension rear side. The created repulsive pLCS barricades NPs from moving closer to a cell's PM's low-tension lateral/front sides. We thus unfold a universal separation behaviour of NPs around a cell. NP delivery rate increased for a larger capillary number and cell nucleus size. It decreased for heavier NPs and a cell stiffer nucleus/NE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信