Cailin B Casey, Braden Cote, Chelsea Heveran, Mark Jankauski
{"title":"翅铰动态影响扑翼昆虫的行程振幅:频率响应方法。","authors":"Cailin B Casey, Braden Cote, Chelsea Heveran, Mark Jankauski","doi":"10.1098/rsif.2025.0074","DOIUrl":null,"url":null,"abstract":"<p><p>Flapping wing insects leverage the dynamics of their compliant flight systems to reduce the energetic costs of flying. However, the extent to which the wing hinge dynamics contribute to the overall system dynamics remains unknown. Therefore, we developed an approach to (i) quantify the passive dynamic properties of the wing hinge and (ii) identify the resonant frequency of the isolated wing/wing hinge system. First, we measured the frequency response relating thorax deformation to wing stroke angle in sacrificed honeybees and army cutworm moths. Using these data, we developed a linear model of the flight system, which we then extended to incorporate nonlinear effects associated with large wing stroke angles. Our findings revealed that both species flap below the linear resonance of the wing hinge. At larger angles, nonlinear aerodynamic damping reduces the resonant frequency, causing both species to flap above wing hinge resonance. We discuss how wing-thorax coupling and muscle dynamics may cause the resonant frequency of the entire flight system to deviate from that of the wing/wing hinge system. Our estimates of wing hinge stiffness and damping provide quantitative parameters that can be incorporated into models of the insect flight system to enable more accurate predictions of resonance behaviour.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250074"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wing hinge dynamics influence stroke amplitudes in flapping wing insects: a frequency response approach.\",\"authors\":\"Cailin B Casey, Braden Cote, Chelsea Heveran, Mark Jankauski\",\"doi\":\"10.1098/rsif.2025.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flapping wing insects leverage the dynamics of their compliant flight systems to reduce the energetic costs of flying. However, the extent to which the wing hinge dynamics contribute to the overall system dynamics remains unknown. Therefore, we developed an approach to (i) quantify the passive dynamic properties of the wing hinge and (ii) identify the resonant frequency of the isolated wing/wing hinge system. First, we measured the frequency response relating thorax deformation to wing stroke angle in sacrificed honeybees and army cutworm moths. Using these data, we developed a linear model of the flight system, which we then extended to incorporate nonlinear effects associated with large wing stroke angles. Our findings revealed that both species flap below the linear resonance of the wing hinge. At larger angles, nonlinear aerodynamic damping reduces the resonant frequency, causing both species to flap above wing hinge resonance. We discuss how wing-thorax coupling and muscle dynamics may cause the resonant frequency of the entire flight system to deviate from that of the wing/wing hinge system. Our estimates of wing hinge stiffness and damping provide quantitative parameters that can be incorporated into models of the insect flight system to enable more accurate predictions of resonance behaviour.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 230\",\"pages\":\"20250074\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0074\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0074","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Wing hinge dynamics influence stroke amplitudes in flapping wing insects: a frequency response approach.
Flapping wing insects leverage the dynamics of their compliant flight systems to reduce the energetic costs of flying. However, the extent to which the wing hinge dynamics contribute to the overall system dynamics remains unknown. Therefore, we developed an approach to (i) quantify the passive dynamic properties of the wing hinge and (ii) identify the resonant frequency of the isolated wing/wing hinge system. First, we measured the frequency response relating thorax deformation to wing stroke angle in sacrificed honeybees and army cutworm moths. Using these data, we developed a linear model of the flight system, which we then extended to incorporate nonlinear effects associated with large wing stroke angles. Our findings revealed that both species flap below the linear resonance of the wing hinge. At larger angles, nonlinear aerodynamic damping reduces the resonant frequency, causing both species to flap above wing hinge resonance. We discuss how wing-thorax coupling and muscle dynamics may cause the resonant frequency of the entire flight system to deviate from that of the wing/wing hinge system. Our estimates of wing hinge stiffness and damping provide quantitative parameters that can be incorporated into models of the insect flight system to enable more accurate predictions of resonance behaviour.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.