面部肩胛骨-肱骨肌萎缩症的多样性挑战和调和遗传学。

IF 2.5 3区 生物学 Q2 GENETICS & HEREDITY
Mitsuru Sasaki-Honda, Takumi Kishimoto, Hidetoshi Sakurai
{"title":"面部肩胛骨-肱骨肌萎缩症的多样性挑战和调和遗传学。","authors":"Mitsuru Sasaki-Honda, Takumi Kishimoto, Hidetoshi Sakurai","doi":"10.1038/s10038-025-01401-6","DOIUrl":null,"url":null,"abstract":"<p><p>Facioscapulohumeral muscular dystrophy (FSHD) is a rare genetic disease with an estimated prevalence of no more than 1 in 8000; however, it is among the most common myopathies affecting global populations. This condition is classically categorised into two genetic types, FSHD1 (MIM: 158900) and FSHD2 (MIM: 158901), which, although have different genetic causes, are phenotypically indistinguishable, manifesting as progressive muscle weakness primarily affecting the face and periscapular muscles, as well as other muscle groups in later stages. The intense efforts of clinical and basic studies to understand this disease have revealed the critical necessity for disease manifestation: ectopic activation of the embryogenic and germline gene DUX4 (double homeobox 4, MIM: 606009) in skeletal muscles and the genetic and epigenetic backgrounds allowing DUX4 expression. Thus, the potential target therapies of FSHD include silencing DUX4 transcription or blocking its translation. Although the central role of DUX4 in FSHD pathology has almost reached a consensus, the mechanism of its activation remains largely unclear. Notably, the clinical dissection of genotype-epigenotype-phenotype observations, including non-penetrant and asymptomatic carriers of permissive genetic backgrounds, highlights the yet unsolved clinical diversity with potential additional layers of DUX4 regulation or other disease-modifying factors. This review provides an overview of essential findings with potential implications for further understanding the mechanisms underlying diverse clinical cases of FSHD and endogenous DUX4 activation in FSHD pathology.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity challenges and reconciles genetics in facioscapulohumeral muscular dystrophy.\",\"authors\":\"Mitsuru Sasaki-Honda, Takumi Kishimoto, Hidetoshi Sakurai\",\"doi\":\"10.1038/s10038-025-01401-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Facioscapulohumeral muscular dystrophy (FSHD) is a rare genetic disease with an estimated prevalence of no more than 1 in 8000; however, it is among the most common myopathies affecting global populations. This condition is classically categorised into two genetic types, FSHD1 (MIM: 158900) and FSHD2 (MIM: 158901), which, although have different genetic causes, are phenotypically indistinguishable, manifesting as progressive muscle weakness primarily affecting the face and periscapular muscles, as well as other muscle groups in later stages. The intense efforts of clinical and basic studies to understand this disease have revealed the critical necessity for disease manifestation: ectopic activation of the embryogenic and germline gene DUX4 (double homeobox 4, MIM: 606009) in skeletal muscles and the genetic and epigenetic backgrounds allowing DUX4 expression. Thus, the potential target therapies of FSHD include silencing DUX4 transcription or blocking its translation. Although the central role of DUX4 in FSHD pathology has almost reached a consensus, the mechanism of its activation remains largely unclear. Notably, the clinical dissection of genotype-epigenotype-phenotype observations, including non-penetrant and asymptomatic carriers of permissive genetic backgrounds, highlights the yet unsolved clinical diversity with potential additional layers of DUX4 regulation or other disease-modifying factors. This review provides an overview of essential findings with potential implications for further understanding the mechanisms underlying diverse clinical cases of FSHD and endogenous DUX4 activation in FSHD pathology.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01401-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01401-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

面肩肱骨肌营养不良症(FSHD)是一种罕见的遗传性疾病,估计患病率不超过1 / 8000;然而,它是影响全球人口的最常见的肌病之一。这种情况通常分为两种遗传类型,FSHD1 (MIM: 158900)和FSHD2 (MIM: 158901),尽管它们具有不同的遗传原因,但在表型上难以区分,表现为主要影响面部和肩胛周围肌肉的进行性肌肉无力,以及后期的其他肌肉群。临床和基础研究的努力揭示了疾病表现的关键必要性:骨骼肌中胚胎发生和种系基因DUX4(双同源盒4,MIM: 606009)的异位激活以及允许DUX4表达的遗传和表观遗传背景。因此,FSHD的潜在靶标治疗包括沉默DUX4转录或阻断其翻译。尽管DUX4在FSHD病理中的核心作用几乎已达成共识,但其激活机制仍不清楚。值得注意的是,对基因型-表观遗传型-表型观察结果的临床解剖,包括允许遗传背景的非渗透和无症状携带者,强调了尚未解决的临床多样性,可能存在DUX4调节或其他疾病修饰因素的附加层。本文综述了一些重要发现,并对进一步理解FSHD不同临床病例的潜在机制和内源性DUX4激活在FSHD病理中的作用具有潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity challenges and reconciles genetics in facioscapulohumeral muscular dystrophy.

Facioscapulohumeral muscular dystrophy (FSHD) is a rare genetic disease with an estimated prevalence of no more than 1 in 8000; however, it is among the most common myopathies affecting global populations. This condition is classically categorised into two genetic types, FSHD1 (MIM: 158900) and FSHD2 (MIM: 158901), which, although have different genetic causes, are phenotypically indistinguishable, manifesting as progressive muscle weakness primarily affecting the face and periscapular muscles, as well as other muscle groups in later stages. The intense efforts of clinical and basic studies to understand this disease have revealed the critical necessity for disease manifestation: ectopic activation of the embryogenic and germline gene DUX4 (double homeobox 4, MIM: 606009) in skeletal muscles and the genetic and epigenetic backgrounds allowing DUX4 expression. Thus, the potential target therapies of FSHD include silencing DUX4 transcription or blocking its translation. Although the central role of DUX4 in FSHD pathology has almost reached a consensus, the mechanism of its activation remains largely unclear. Notably, the clinical dissection of genotype-epigenotype-phenotype observations, including non-penetrant and asymptomatic carriers of permissive genetic backgrounds, highlights the yet unsolved clinical diversity with potential additional layers of DUX4 regulation or other disease-modifying factors. This review provides an overview of essential findings with potential implications for further understanding the mechanisms underlying diverse clinical cases of FSHD and endogenous DUX4 activation in FSHD pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信