{"title":"亚硒酸钠与酸性乳酸Pediococcus对苜蓿青贮发酵品质及好氧稳定性的协同效应。","authors":"Qingdong Wang, Shanshan Kuang, Chunyue Wang, Panjie Cheng, Sitong Ma, Baohong Tang","doi":"10.1007/s10123-025-00717-9","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium, an essential micronutrient that cannot be endogenously synthesized by mammals, requires exogenous dietary supplementation. Lactic acid bacteria can biotransform sodium selenite (Na₂SeO₃) into bioavailable selenium nanoparticles (SeNPs), creating multifunctional selenium-enriched forages. This study systematically assessed the synergy of SeNPs and Pediococcus acidilactici in alfalfa silage through four treatments: control (CK), P. acidilactici alone (LP), Na₂SeO₃ alone (Se), and combined treatment (LPSe). After 30 days of ensiling, fermentation quality, microbial community, and aerobic stability were determined. The results revealed that LPSe silage exhibited decreased pH, butyric acid, and binding protein contents compared with CK, while its organic selenium content (1.64 mg/kg DM) was Significantly higher than that of LP Silage. 16S rRNA sequencing showed increased abundance of Pediococcus and Lactobacillus in LPSe Silage with Simplified bacterial community structure. After 7 days of aerobic exposure, CK Silage showed rapid pH and ammonia Nitrogen increase, whereas LPSe Silage had 28.24% longer aerobic stability than CK and 11.50% longer than LP. These results demonstrate LPSe as the optimal treatment for alfalfa silage.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synergistic effect between sodium selenite and Pediococcus acidilactici on fermentation quality and aerobic stability of alfalfa silage.\",\"authors\":\"Qingdong Wang, Shanshan Kuang, Chunyue Wang, Panjie Cheng, Sitong Ma, Baohong Tang\",\"doi\":\"10.1007/s10123-025-00717-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selenium, an essential micronutrient that cannot be endogenously synthesized by mammals, requires exogenous dietary supplementation. Lactic acid bacteria can biotransform sodium selenite (Na₂SeO₃) into bioavailable selenium nanoparticles (SeNPs), creating multifunctional selenium-enriched forages. This study systematically assessed the synergy of SeNPs and Pediococcus acidilactici in alfalfa silage through four treatments: control (CK), P. acidilactici alone (LP), Na₂SeO₃ alone (Se), and combined treatment (LPSe). After 30 days of ensiling, fermentation quality, microbial community, and aerobic stability were determined. The results revealed that LPSe silage exhibited decreased pH, butyric acid, and binding protein contents compared with CK, while its organic selenium content (1.64 mg/kg DM) was Significantly higher than that of LP Silage. 16S rRNA sequencing showed increased abundance of Pediococcus and Lactobacillus in LPSe Silage with Simplified bacterial community structure. After 7 days of aerobic exposure, CK Silage showed rapid pH and ammonia Nitrogen increase, whereas LPSe Silage had 28.24% longer aerobic stability than CK and 11.50% longer than LP. These results demonstrate LPSe as the optimal treatment for alfalfa silage.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-025-00717-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00717-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The synergistic effect between sodium selenite and Pediococcus acidilactici on fermentation quality and aerobic stability of alfalfa silage.
Selenium, an essential micronutrient that cannot be endogenously synthesized by mammals, requires exogenous dietary supplementation. Lactic acid bacteria can biotransform sodium selenite (Na₂SeO₃) into bioavailable selenium nanoparticles (SeNPs), creating multifunctional selenium-enriched forages. This study systematically assessed the synergy of SeNPs and Pediococcus acidilactici in alfalfa silage through four treatments: control (CK), P. acidilactici alone (LP), Na₂SeO₃ alone (Se), and combined treatment (LPSe). After 30 days of ensiling, fermentation quality, microbial community, and aerobic stability were determined. The results revealed that LPSe silage exhibited decreased pH, butyric acid, and binding protein contents compared with CK, while its organic selenium content (1.64 mg/kg DM) was Significantly higher than that of LP Silage. 16S rRNA sequencing showed increased abundance of Pediococcus and Lactobacillus in LPSe Silage with Simplified bacterial community structure. After 7 days of aerobic exposure, CK Silage showed rapid pH and ammonia Nitrogen increase, whereas LPSe Silage had 28.24% longer aerobic stability than CK and 11.50% longer than LP. These results demonstrate LPSe as the optimal treatment for alfalfa silage.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.