{"title":"通过langmuir和freundlich模型验证了万寿菊花废弃物对污水中铅和镉的生物吸附。","authors":"Priti Chauhan, Ritu Panwar, Sudhakar Srivastava, Jyoti Mathur","doi":"10.1080/15226514.2025.2557624","DOIUrl":null,"url":null,"abstract":"<p><p>The discharge of wastewater containing toxic pollutants, such as lead [Pb(II)] and cadmium [Cd(II)], into water bodies is one of the most critical challenges nowadays. Apart from this, the daily generation of organic waste like vegetable, fruit, and flower waste in cities is increasing constantly. Therefore, a novel approach was adopted in this study that used flower waste (<i>Tagetes erecta</i> L. marigold) for the metal removal from polluted water with a view to manage flower waste and metal contaminants simultaneously. The characterization of prepared waste of <i>T. erecta</i> flowers and its biosorption capacity for Cd and Pb were investigated through various techniques viz., atomic absorption spectrophotometer (AAS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared analysis (FTIR). Experiments for adsorption isotherm were carried out at the room temperature and the performance was determined using Langmuir and Freundlich adsorption models. Equilibrium data was confirmed to follow pseudo second order kinetics. The maximum adsorption capacities of flower waste for Cd(II) and Pb(II) were 52.6 and 21.74 mg g<sup>-1</sup>, respectively. The study findings indicated that the optimum pH and time for the most effective elimination were pH 6 and 150 min, respectively, for Pb (80%) and Cd (91.8%).</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lead and cadmium biosorption from contaminated water using <i>Tagetes erecta</i> L. flower waste proven through langmuir and freundlich models.\",\"authors\":\"Priti Chauhan, Ritu Panwar, Sudhakar Srivastava, Jyoti Mathur\",\"doi\":\"10.1080/15226514.2025.2557624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discharge of wastewater containing toxic pollutants, such as lead [Pb(II)] and cadmium [Cd(II)], into water bodies is one of the most critical challenges nowadays. Apart from this, the daily generation of organic waste like vegetable, fruit, and flower waste in cities is increasing constantly. Therefore, a novel approach was adopted in this study that used flower waste (<i>Tagetes erecta</i> L. marigold) for the metal removal from polluted water with a view to manage flower waste and metal contaminants simultaneously. The characterization of prepared waste of <i>T. erecta</i> flowers and its biosorption capacity for Cd and Pb were investigated through various techniques viz., atomic absorption spectrophotometer (AAS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared analysis (FTIR). Experiments for adsorption isotherm were carried out at the room temperature and the performance was determined using Langmuir and Freundlich adsorption models. Equilibrium data was confirmed to follow pseudo second order kinetics. The maximum adsorption capacities of flower waste for Cd(II) and Pb(II) were 52.6 and 21.74 mg g<sup>-1</sup>, respectively. The study findings indicated that the optimum pH and time for the most effective elimination were pH 6 and 150 min, respectively, for Pb (80%) and Cd (91.8%).</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2557624\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2557624","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
将含铅[Pb(II)]和镉[Cd(II)]等有毒污染物的废水排放到水体中是当今最严峻的挑战之一。除此之外,城市中每天产生的蔬菜、水果、花卉等有机废物也在不断增加。为此,本研究提出了利用万寿菊(Tagetes erecta L. marigold)花卉废弃物去除水中金属的新方法,以期实现花卉废弃物和金属污染物的同时治理。采用原子吸收分光光度计(AAS)、扫描电镜-能量色散x射线能谱(SEM-EDX)和傅里叶变换红外光谱(FTIR)等技术,研究了直立木花制备废弃物的特性及其对Cd和Pb的生物吸附能力。在室温条件下进行等温线吸附实验,采用Langmuir和Freundlich吸附模型测定吸附性能。平衡数据符合准二级动力学。花渣对Cd(II)和Pb(II)的最大吸附量分别为52.6和21.74 mg g-1。研究结果表明,对Pb(80%)和Cd(91.8%)去除效果最佳的pH和时间分别为pH 6和150 min。
Lead and cadmium biosorption from contaminated water using Tagetes erecta L. flower waste proven through langmuir and freundlich models.
The discharge of wastewater containing toxic pollutants, such as lead [Pb(II)] and cadmium [Cd(II)], into water bodies is one of the most critical challenges nowadays. Apart from this, the daily generation of organic waste like vegetable, fruit, and flower waste in cities is increasing constantly. Therefore, a novel approach was adopted in this study that used flower waste (Tagetes erecta L. marigold) for the metal removal from polluted water with a view to manage flower waste and metal contaminants simultaneously. The characterization of prepared waste of T. erecta flowers and its biosorption capacity for Cd and Pb were investigated through various techniques viz., atomic absorption spectrophotometer (AAS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared analysis (FTIR). Experiments for adsorption isotherm were carried out at the room temperature and the performance was determined using Langmuir and Freundlich adsorption models. Equilibrium data was confirmed to follow pseudo second order kinetics. The maximum adsorption capacities of flower waste for Cd(II) and Pb(II) were 52.6 and 21.74 mg g-1, respectively. The study findings indicated that the optimum pH and time for the most effective elimination were pH 6 and 150 min, respectively, for Pb (80%) and Cd (91.8%).
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.