解剖导向、模式不可知的神经影像学异常分割。

IF 3.3 2区 医学 Q1 NEUROIMAGING
Diala Lteif, Divya Appapogu, Sarah A. Bargal, Bryan A. Plummer, Vijaya B. Kolachalama
{"title":"解剖导向、模式不可知的神经影像学异常分割。","authors":"Diala Lteif,&nbsp;Divya Appapogu,&nbsp;Sarah A. Bargal,&nbsp;Bryan A. Plummer,&nbsp;Vijaya B. Kolachalama","doi":"10.1002/hbm.70329","DOIUrl":null,"url":null,"abstract":"<p>Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on a consistent multimodal input. Here, we propose an anatomy-guided, modality-agnostic framework to assess disease-related abnormalities in brain MRI, leveraging structural context to ensure robustness in diverse input configurations. Central to our approach is Region ModalMix (RMM), an augmentation strategy that integrates anatomical priors during training to improve model performance under missing or variable modality conditions. Using the BraTS 2020 dataset (<i>n</i> = 369), our framework outperformed state-of-the-art methods, achieving a 9.68 mm average reduction in 95th percentile Hausdorff Distance (HD95) and a 1.36 percentage point improvement in Dice Similarity Coefficient (DSC) over baselines with only one available modality. To evaluate out-of-distribution generalization, we tested RMM on the MU-Glioma-Post dataset (<i>n</i> = 593), which includes heterogeneous post-operative glioma cases. Despite distribution shifts, RMM maintained strong performance, reducing HD95 by 18.24 mm and improving DSC by 9.54% points in the most severe missing-modality scenario. Our framework is applicable to multimodal neuroimaging pipelines, enabling more generalizable abnormality detection under heterogeneous data availability.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anatomy-Guided, Modality-Agnostic Segmentation of Neuroimaging Abnormalities\",\"authors\":\"Diala Lteif,&nbsp;Divya Appapogu,&nbsp;Sarah A. Bargal,&nbsp;Bryan A. Plummer,&nbsp;Vijaya B. Kolachalama\",\"doi\":\"10.1002/hbm.70329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on a consistent multimodal input. Here, we propose an anatomy-guided, modality-agnostic framework to assess disease-related abnormalities in brain MRI, leveraging structural context to ensure robustness in diverse input configurations. Central to our approach is Region ModalMix (RMM), an augmentation strategy that integrates anatomical priors during training to improve model performance under missing or variable modality conditions. Using the BraTS 2020 dataset (<i>n</i> = 369), our framework outperformed state-of-the-art methods, achieving a 9.68 mm average reduction in 95th percentile Hausdorff Distance (HD95) and a 1.36 percentage point improvement in Dice Similarity Coefficient (DSC) over baselines with only one available modality. To evaluate out-of-distribution generalization, we tested RMM on the MU-Glioma-Post dataset (<i>n</i> = 593), which includes heterogeneous post-operative glioma cases. Despite distribution shifts, RMM maintained strong performance, reducing HD95 by 18.24 mm and improving DSC by 9.54% points in the most severe missing-modality scenario. Our framework is applicable to multimodal neuroimaging pipelines, enabling more generalizable abnormality detection under heterogeneous data availability.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 14\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70329\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70329","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)提供了多种序列,提供了大脑解剖和病理的互补视图。然而,由于临床和后勤方面的限制,现实世界的数据集往往在序列可用性方面表现出可变性。这种可变性使放射学解释复杂化,并限制了依赖于一致的多模态输入的机器学习模型的泛化性。在这里,我们提出了一个解剖学指导的、模式不可知的框架来评估大脑MRI中与疾病相关的异常,利用结构背景来确保在不同输入配置中的稳健性。我们方法的核心是区域模态混合(RMM),这是一种增强策略,在训练过程中集成解剖先验,以提高模型在缺失或可变模态条件下的性能。使用BraTS 2020数据集(n = 369),我们的框架优于最先进的方法,在只有一种可用模态的情况下,第95百分位豪斯多夫距离(HD95)平均减少9.68毫米,骰子相似系数(DSC)比基线提高1.36个百分点。为了评估分布外泛化,我们在MU-Glioma-Post数据集(n = 593)上测试了RMM,其中包括异质术后胶质瘤病例。尽管分布发生了变化,RMM仍然保持了强劲的表现,在最严重的模态缺失情况下,HD95降低了18.24 mm, DSC提高了9.54%。我们的框架适用于多模态神经成像管道,在异构数据可用性下实现更通用的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anatomy-Guided, Modality-Agnostic Segmentation of Neuroimaging Abnormalities

Anatomy-Guided, Modality-Agnostic Segmentation of Neuroimaging Abnormalities

Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on a consistent multimodal input. Here, we propose an anatomy-guided, modality-agnostic framework to assess disease-related abnormalities in brain MRI, leveraging structural context to ensure robustness in diverse input configurations. Central to our approach is Region ModalMix (RMM), an augmentation strategy that integrates anatomical priors during training to improve model performance under missing or variable modality conditions. Using the BraTS 2020 dataset (n = 369), our framework outperformed state-of-the-art methods, achieving a 9.68 mm average reduction in 95th percentile Hausdorff Distance (HD95) and a 1.36 percentage point improvement in Dice Similarity Coefficient (DSC) over baselines with only one available modality. To evaluate out-of-distribution generalization, we tested RMM on the MU-Glioma-Post dataset (n = 593), which includes heterogeneous post-operative glioma cases. Despite distribution shifts, RMM maintained strong performance, reducing HD95 by 18.24 mm and improving DSC by 9.54% points in the most severe missing-modality scenario. Our framework is applicable to multimodal neuroimaging pipelines, enabling more generalizable abnormality detection under heterogeneous data availability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信