{"title":"生物废弃物衍生的富S, n碳量子点:影响光催化的各种因素的深入分析。","authors":"Siddharth, Gita Rani, Harish Kumar, Sanju Bala Dhull, Sunil Kumar, Naveen Kumar","doi":"10.1080/15226514.2025.2559164","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-based nanomaterials are becoming increasingly prevalent due to their high degradation rates for various aquatic contaminants. However, their expensive and complex synthesis poses a major challenge. One of the most efficient and easy methods to degrade dyes is by the use of carbon quantum dots (CQDs). This research focuses on the degradation of an aquatic pollutant by deriving CQDs from green sources, as plant part-based CQDs possess the potential to degrade aquatic contaminants. In this study, we first examine the use of Dalbergia sissoo as a method for producing bare or unmodified carbon quantum dots (UCQDs) and S and N co-enriched carbon quantum dots (S, N-CQDs) through a straightforward, rapid, and single-step microwave process. EDX, FTIR, FESEM, XRD, and UV-Visible spectra were utilized to characterize CQDs. The zeta potential of as-synthesized CQDs was also measured. The photocatalytic activity of CQDs was studied by degrading a cationic dye known as Malachite Green (MG) dye, along with optimization of various factors, notably pH, dye concentration, and CQD volume, which were also tuned. S, N-CQDs reported outstanding photocatalytic capacity (95.12%) toward 15 ppm MG dye in bright sunlight at a pH of 9, employing 1 ml of photocatalyst. These CQDs emerged as a promising photocatalyst due to their easy synthesis and remarkable photocatalytic efficiency.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-14"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-waste derived S, N-enriched carbon quantum dots: an in-depth analysis of various factors affecting photocatalysis.\",\"authors\":\"Siddharth, Gita Rani, Harish Kumar, Sanju Bala Dhull, Sunil Kumar, Naveen Kumar\",\"doi\":\"10.1080/15226514.2025.2559164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon-based nanomaterials are becoming increasingly prevalent due to their high degradation rates for various aquatic contaminants. However, their expensive and complex synthesis poses a major challenge. One of the most efficient and easy methods to degrade dyes is by the use of carbon quantum dots (CQDs). This research focuses on the degradation of an aquatic pollutant by deriving CQDs from green sources, as plant part-based CQDs possess the potential to degrade aquatic contaminants. In this study, we first examine the use of Dalbergia sissoo as a method for producing bare or unmodified carbon quantum dots (UCQDs) and S and N co-enriched carbon quantum dots (S, N-CQDs) through a straightforward, rapid, and single-step microwave process. EDX, FTIR, FESEM, XRD, and UV-Visible spectra were utilized to characterize CQDs. The zeta potential of as-synthesized CQDs was also measured. The photocatalytic activity of CQDs was studied by degrading a cationic dye known as Malachite Green (MG) dye, along with optimization of various factors, notably pH, dye concentration, and CQD volume, which were also tuned. S, N-CQDs reported outstanding photocatalytic capacity (95.12%) toward 15 ppm MG dye in bright sunlight at a pH of 9, employing 1 ml of photocatalyst. These CQDs emerged as a promising photocatalyst due to their easy synthesis and remarkable photocatalytic efficiency.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2559164\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2559164","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bio-waste derived S, N-enriched carbon quantum dots: an in-depth analysis of various factors affecting photocatalysis.
Carbon-based nanomaterials are becoming increasingly prevalent due to their high degradation rates for various aquatic contaminants. However, their expensive and complex synthesis poses a major challenge. One of the most efficient and easy methods to degrade dyes is by the use of carbon quantum dots (CQDs). This research focuses on the degradation of an aquatic pollutant by deriving CQDs from green sources, as plant part-based CQDs possess the potential to degrade aquatic contaminants. In this study, we first examine the use of Dalbergia sissoo as a method for producing bare or unmodified carbon quantum dots (UCQDs) and S and N co-enriched carbon quantum dots (S, N-CQDs) through a straightforward, rapid, and single-step microwave process. EDX, FTIR, FESEM, XRD, and UV-Visible spectra were utilized to characterize CQDs. The zeta potential of as-synthesized CQDs was also measured. The photocatalytic activity of CQDs was studied by degrading a cationic dye known as Malachite Green (MG) dye, along with optimization of various factors, notably pH, dye concentration, and CQD volume, which were also tuned. S, N-CQDs reported outstanding photocatalytic capacity (95.12%) toward 15 ppm MG dye in bright sunlight at a pH of 9, employing 1 ml of photocatalyst. These CQDs emerged as a promising photocatalyst due to their easy synthesis and remarkable photocatalytic efficiency.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.