低氧而非高碳酸血症下,苍白眼星形胶质细胞Fos免疫反应性增加。

IF 2.1 4区 生物学 Q4 CELL BIOLOGY
Kouki Kato, Risa Serizawa, Takuya Yokoyama, Nobuaki Nakamuta, Yoshio Yamamoto
{"title":"低氧而非高碳酸血症下,苍白眼星形胶质细胞Fos免疫反应性增加。","authors":"Kouki Kato, Risa Serizawa, Takuya Yokoyama, Nobuaki Nakamuta, Yoshio Yamamoto","doi":"10.1007/s00418-025-02420-2","DOIUrl":null,"url":null,"abstract":"<p><p>The raphe pallidus (RPa), a part of the caudal medullary raphe nucleus, has been suggested to participate in respiratory regulation. Therefore, hypoxia and hypercapnia are expected to affect the expression of Fos, a marker of cellular activation, in the RPa; however, there is currently no consensus on Fos expression in the RPa under hypoxic and hypercapnic conditions. The present study investigated the distribution of Fos expression in the RPa of rats exposed to hypoxia (10% O<sub>2</sub>), hypercapnia (8% CO<sub>2</sub>), and hypercapnic hypoxia (10% O<sub>2</sub> and 8% CO<sub>2</sub>) for 2 h. To confirm whether activation of the RPa affects respiratory function, an electrical stimulation was applied to the RPa of anesthetized rats. The stimulation induced a significant increase in the respiratory rate, which was similar to the respiratory changes induced by hypoxia. An immunohistochemical analysis revealed two types of cells in the RPa: serotonin-immunoreactive neurons and SOX9-immunoreactive astrocytes. Hypoxia significantly increased Fos immunoreactivity in astrocytes in the rostral region of the RPa, but did not affect Fos immunoreactivity in serotonergic neurons. In contrast, hypercapnia and hypercapnic hypoxia did not affect Fos immunoreactivity in either cell type in any region. These results suggest that astrocytes in the RPa are specifically activated by hypoxia and actively contribute to the respiratory response to hypoxia.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"91"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Increased Fos immunoreactivity in astrocytes in the raphe pallidus under hypoxia, not hypercapnia.\",\"authors\":\"Kouki Kato, Risa Serizawa, Takuya Yokoyama, Nobuaki Nakamuta, Yoshio Yamamoto\",\"doi\":\"10.1007/s00418-025-02420-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The raphe pallidus (RPa), a part of the caudal medullary raphe nucleus, has been suggested to participate in respiratory regulation. Therefore, hypoxia and hypercapnia are expected to affect the expression of Fos, a marker of cellular activation, in the RPa; however, there is currently no consensus on Fos expression in the RPa under hypoxic and hypercapnic conditions. The present study investigated the distribution of Fos expression in the RPa of rats exposed to hypoxia (10% O<sub>2</sub>), hypercapnia (8% CO<sub>2</sub>), and hypercapnic hypoxia (10% O<sub>2</sub> and 8% CO<sub>2</sub>) for 2 h. To confirm whether activation of the RPa affects respiratory function, an electrical stimulation was applied to the RPa of anesthetized rats. The stimulation induced a significant increase in the respiratory rate, which was similar to the respiratory changes induced by hypoxia. An immunohistochemical analysis revealed two types of cells in the RPa: serotonin-immunoreactive neurons and SOX9-immunoreactive astrocytes. Hypoxia significantly increased Fos immunoreactivity in astrocytes in the rostral region of the RPa, but did not affect Fos immunoreactivity in serotonergic neurons. In contrast, hypercapnia and hypercapnic hypoxia did not affect Fos immunoreactivity in either cell type in any region. These results suggest that astrocytes in the RPa are specifically activated by hypoxia and actively contribute to the respiratory response to hypoxia.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\"163 1\",\"pages\":\"91\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-025-02420-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-025-02420-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中缝苍白质(raphe pallidus, RPa)是中缝髓核尾侧的一部分,被认为参与呼吸调节。因此,缺氧和高碳酸血症可能会影响RPa中Fos的表达,这是细胞激活的标志;然而,在低氧和高碳酸血症条件下,Fos在RPa中的表达目前还没有共识。本研究研究了暴露于缺氧(10% O2)、高碳酸血症(8% CO2)和高碳酸血症(10% O2和8% CO2) 2小时的大鼠RPa中Fos表达的分布。为了确认RPa的激活是否影响呼吸功能,我们对麻醉大鼠的RPa进行了电刺激。刺激引起呼吸速率显著增加,与缺氧引起的呼吸变化相似。免疫组织化学分析显示RPa中有两种类型的细胞:血清素免疫反应神经元和sox9免疫反应星形胶质细胞。缺氧显著增加RPa吻侧星形胶质细胞Fos的免疫反应性,但不影响血清素能神经元Fos的免疫反应性。相比之下,高碳酸血症和高碳酸血症低氧不影响Fos在任何区域的免疫反应性。这些结果表明,RPa中的星形胶质细胞被缺氧特异性激活,并积极参与对缺氧的呼吸反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased Fos immunoreactivity in astrocytes in the raphe pallidus under hypoxia, not hypercapnia.

The raphe pallidus (RPa), a part of the caudal medullary raphe nucleus, has been suggested to participate in respiratory regulation. Therefore, hypoxia and hypercapnia are expected to affect the expression of Fos, a marker of cellular activation, in the RPa; however, there is currently no consensus on Fos expression in the RPa under hypoxic and hypercapnic conditions. The present study investigated the distribution of Fos expression in the RPa of rats exposed to hypoxia (10% O2), hypercapnia (8% CO2), and hypercapnic hypoxia (10% O2 and 8% CO2) for 2 h. To confirm whether activation of the RPa affects respiratory function, an electrical stimulation was applied to the RPa of anesthetized rats. The stimulation induced a significant increase in the respiratory rate, which was similar to the respiratory changes induced by hypoxia. An immunohistochemical analysis revealed two types of cells in the RPa: serotonin-immunoreactive neurons and SOX9-immunoreactive astrocytes. Hypoxia significantly increased Fos immunoreactivity in astrocytes in the rostral region of the RPa, but did not affect Fos immunoreactivity in serotonergic neurons. In contrast, hypercapnia and hypercapnic hypoxia did not affect Fos immunoreactivity in either cell type in any region. These results suggest that astrocytes in the RPa are specifically activated by hypoxia and actively contribute to the respiratory response to hypoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信