Shreya Ghimire, Biyun Xue, Kun Li, Ryan M Gannon, Christine L Wohlford-Lenane, Andrew L Thurman, Huiyu Gong, Grace C Necker, Jian Zheng, David K Meyerholz, Stanley Perlman, Paul B McCray, Alejandro A Pezzulo
{"title":"IL-13降低对气道上皮SARS-CoV-2感染的易感性,但通过类二十烷信号传导在体内增加疾病严重程度。","authors":"Shreya Ghimire, Biyun Xue, Kun Li, Ryan M Gannon, Christine L Wohlford-Lenane, Andrew L Thurman, Huiyu Gong, Grace C Necker, Jian Zheng, David K Meyerholz, Stanley Perlman, Paul B McCray, Alejandro A Pezzulo","doi":"10.1016/j.ebiom.2025.105920","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signalling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents.</p><p><strong>Methods: </strong>The role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response was investigated in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo using single-cell and bulk RNA-sequencing approaches. Additionally, the responses were quantified using immunofluorescence, histopathology, immunohistochemistry and LC-MS/MS assays.</p><p><strong>Findings: </strong>IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralisation in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signalling and were abolished in mice deficient in the phospholipase A<sub>2</sub> enzyme PLA2G2D.</p><p><strong>Interpretation: </strong>IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signalling may be protective against progression to severe respiratory virus-induced lung diseases.</p><p><strong>Funding: </strong>Carver Trust COVID-19 Grant; CF Foundation Iowa RDP; NIH 1R01HL163024; K01HL140261; NIH R01AI129269; NIH P01AI060699; NIH Grant P30 DK-54759; Cystic Fibrosis Foundation PEZZUL20A1-KB; Stead Family Foundation.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"120 ","pages":"105920"},"PeriodicalIF":10.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466150/pdf/","citationCount":"0","resultStr":"{\"title\":\"IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo via eicosanoid signalling.\",\"authors\":\"Shreya Ghimire, Biyun Xue, Kun Li, Ryan M Gannon, Christine L Wohlford-Lenane, Andrew L Thurman, Huiyu Gong, Grace C Necker, Jian Zheng, David K Meyerholz, Stanley Perlman, Paul B McCray, Alejandro A Pezzulo\",\"doi\":\"10.1016/j.ebiom.2025.105920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signalling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents.</p><p><strong>Methods: </strong>The role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response was investigated in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo using single-cell and bulk RNA-sequencing approaches. Additionally, the responses were quantified using immunofluorescence, histopathology, immunohistochemistry and LC-MS/MS assays.</p><p><strong>Findings: </strong>IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralisation in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signalling and were abolished in mice deficient in the phospholipase A<sub>2</sub> enzyme PLA2G2D.</p><p><strong>Interpretation: </strong>IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signalling may be protective against progression to severe respiratory virus-induced lung diseases.</p><p><strong>Funding: </strong>Carver Trust COVID-19 Grant; CF Foundation Iowa RDP; NIH 1R01HL163024; K01HL140261; NIH R01AI129269; NIH P01AI060699; NIH Grant P30 DK-54759; Cystic Fibrosis Foundation PEZZUL20A1-KB; Stead Family Foundation.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":\"120 \",\"pages\":\"105920\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2025.105920\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105920","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo via eicosanoid signalling.
Background: Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signalling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents.
Methods: The role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response was investigated in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo using single-cell and bulk RNA-sequencing approaches. Additionally, the responses were quantified using immunofluorescence, histopathology, immunohistochemistry and LC-MS/MS assays.
Findings: IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralisation in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signalling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D.
Interpretation: IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signalling may be protective against progression to severe respiratory virus-induced lung diseases.
Funding: Carver Trust COVID-19 Grant; CF Foundation Iowa RDP; NIH 1R01HL163024; K01HL140261; NIH R01AI129269; NIH P01AI060699; NIH Grant P30 DK-54759; Cystic Fibrosis Foundation PEZZUL20A1-KB; Stead Family Foundation.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.